Verification of real-time IGS products and their influence on Precise Point Positioning

Tomasz HADAŚ, Jan KAPLON, Karina WILGAN, Jaroslaw BOSY, Jan SIERNY

Wroclaw University of Environmental and Life Sciences, Poland
Introduction

RTIGS project

Motivation

Methodology

RTIGS current status

Accuracy

Latency

Quality degradation over time

Short-time predictions

Prediction of orbit corrections

Prediction of clock corrections

Conclusions
Target combination product performances are:

- Satellite Clock Accuracy: **0.3 ns**
- Station Clock Accuracy: **0.3 ns**
- Orbit Accuracy: At the level of the IGS Ultra predictions (**5cm**)
- Latency (when available in RT): **10 s**

Update interval in stream:

- orbit corrections: **60s**
- clock corrections: **5s**
- code biases: **5s**
Lack of documentation on how to apply corrections:

- high standardization (Ntrip, RTCM),
- few papers and presentations about RTIGS (with bugs).
Beginner difficulties

1. Lack of documentation on how to apply corrections:
 - high standardization (Ntrip, RTCM),
 - few papers and presentations about RTIGS (with bugs).

2. Poor quality verification (until recently):
 - only target accuracy provided,
 - PPP monitor scenarios,
 - AC combination results (Number, RMS and sigma).
1. Record navigation data and time-series of real-time correction (5 days)
2. Apply clock and orbit corrections, recalculate APC to CoM
3. Compare results with IGS Final orbits/clocks
4. Compute statistics for residuals for each satellite
5. Analyze outliers

RTIGS project verification methodology (1)
RTIGS orbit quality (1)

Average STD < 0.050 m, average bias ± 0.025 m
Poor quality over Pacific Ocean and Southern Ocean
RTIGS clocks vs IGS Final

- Basic subtraction
- Subtraction without PRN21
- Subtraction after removal of common offset in each epoch

Standard deviation
Mean bias
Cesium
Rubidium

RTIGS current status
Short-time predictions
Conclusions
RTIGS Rubidium clocks quality (1)

Repeatable outliers for PRN: 19 (IIR), 21 (IIR), 31(IIM)
Random nature of outliers for the remaining 4 satellites
RTIGS Cesium clocks quality (1)

Repeatabile outliers for PRN: 3 (IIA) and 24 (IIF)
Single cases of outlying long-arcs for remaining satellites
Isolated cases of missing data for 30min, more few-minutes gaps
1) Two close in time cases of data gap (2 & 3 messages) for individual satellite.
2) Few minutes of repeatable uncommon clock correction latency + data gaps.
Simulated data transfer interruptions for various time-periods

Difference between real-time corrections and delayed data as a measure of quality degradation over time
Delayed orbit corrections

After 1 min. 95% of corrections degrades < 2 cm; 4min. < 5cm
Correction for satellites with Cesium clocks degrades slightly faster.
Delayed clock corrections

After 10 sec. 95% of corrections degrades < 2 cm, 30 sec. < 5 cm
Correction for satellites with Cesium clocks degrades significantly faster.
Real-time in-field kinematic PPP:

- continuous positioning in changing conditions:
 - environmental (troposphere, ionosphere),
 - spatial (terrain, horizon obstructions);
- rely on available orbits and clocks;
- require constant Ntrip connection.

In case of interruption in Internet connection (e.g., outside the GSM range) - is it possible to continue measurements?
By using the data from the past - predict the corrections:

- how to fit the model?
- what accuracy is required?
- how much past data is needed?
- how far one can predict?
Polynomial fit

Polynomials of degree 3 and 4 fitted into 2-hour time series of orbit correction data (PRN 1: IIF, Rb)
Polynomial fit

3-deg polynomials: mean=0.000m, StdDev=0.030m, range=(-0.119 : +0.108)
4-deg polynomials: mean=0.000m, StdDev=0.007m, range=(-0.035 : +0.031)
Results of polynomial orbit predictions (PRN1: IIF, Rb)

Slower degradation: 2cm after 5min.; 5cm after 10min., (for: deg=3, multi=3) (instead of: 2cm after 1min.; 5cm after 4min.)
Results of polynomial orbit predictions (PRN8: IIA, Cs)

Slower degradation: 2cm after 4min.; 5cm after 7min., (for: deg=3, multi=3) (instead of: 2cm after 1min.; 5cm after 4min.)
None of the prediction method improved the results for clocks.
Clock corrections

None of the prediction method improved the results for clocks.
Conclusions

1. IGS provides real-time corrections for broadcast orbits and clocks;
2. In general, RTIGS products meet the target accuracy:
 - RMS=5cm for each orbit component, RMS=9cm for clocks,
 - there are interruptions in data transmission as well as outliers,
 - the correction (especially for clocks) degrades very fast,
 - users should be careful and aware of imperfections;

3. In case of interruptions in data transmission:
 - it is possible to extend the lifetime of orbit corrections by 3-deg. polynomial prediction,
 - clock prediction methods gives worse results;

4. “Guide to use RTIGS products” would be helpful:
 - may encourage the scientific community to take advantage of them.