Verification of real-time IGS products and their influence on Precise Point Positioning

<u>Tomasz HADAŚ</u>, Jan KAPLON, Karina WILGAN, Jaroslaw BOSY, Jan SIERNY

Wroclaw University of Environmental and Life Sciences, Poland

GNSS PPP Workshop: Reaching Full Potential, 12-14 June 2013, Ottawa

RTIGS project Motivation Methodology

Presentation plan

Introduction

- RTIGS project
- Motivation
- Methodology

2 RTIGS current status

- Accuracy
- Latency
- Quality degradation over time
- Short-time predictions
 - Prediction of orbit corrections
 - Prediction of clock corrections

4 Conclusions

RTIGS project Motivation Methodology

RTIGS project

Target combination product performances are:

- Satellite Clock Accuracy: 0.3 ns
- Station Clock Accuracy: 0.3 ns
- Orbit Accuracy: At the level of the IGS Ultra predictions (5cm)
- Latency (when available in RT): 10 s

Update interval in stream:

- orbit corrections: 60s
- clock corrections: 5s
- code biases: 5s

RTIGS project Motivation Methodology

Beginner difficulties

- **Q** Lack of documentation on how to apply corrections:
 - high standardization (Ntrip, RTCM),
 - few papers and presentations about RTIGS (with bugs).

イロン 不同 とくほど 不良 とう

RTIGS project Motivation Methodology

Beginner difficulties

- **Q** Lack of documentation on how to apply corrections:
 - high standardization (Ntrip, RTCM),
 - few papers and presentations about RTIGS (with bugs).

- Over a province of the second seco
 - only target accuracy provided,
 - PPP monitor scenarios,
 - AC combination results (Number, RMS and sigma).

RTIGS project verification methodology (1)

- 1 Record navigation data and time-series of real-time correction (5 days)
- 2 Apply clock and orbit corrections, recalculate APC to CoM
- 3 Compare results with IGS Final orbits/clocks

- 4 Compute statistics for residuals for each satellite
- 5 Analyze outliers

Accuracy Latency Quality degradation over time

RTIGS orbit quality (1)

Average STD < 0.050 m, avarage bias \pm 0.025 m

GNSS PPP Workshop: Reaching Full Potential, 12-14 June 2013, Ottawa

Accuracy Latency Quality degradation over time

RTIGS orbit quality (2)

Poor quality over Pacific Ocean and Southern Ocean

メロト メポト メヨト メヨト

Accuracy Latency Quality degradation over time

RTIGS clocks quality (1)

GNSS PPP Workshop: Reaching Full Potential, 12-14 June 2013, Ottawa

æ

Accuracy Latency Quality degradation over time

RTIGS Rubidium clocks quality (1)

Repeatable outliers for PRN: 19 (IIR), 21 (IIR), 31(IIM)

Accuracy Latency Quality degradation over time

RTIGS Rubidium clocks quality (2)

Random nature of outliers for the remaining 4 satellites

Accuracy Latency Quality degradation over time

RTIGS Cesium clocks quality (1)

Repeatable outliers for PRN: 3 (IIA) and 24 (IIF)

Accuracy Latency Quality degradation over time

RTIGS Cesium clocks quality (2)

Single cases of outlying long-arcs for remaining satellites

Accuracy L**atency** Quality degradation over time

Latency - overview

Isolated cases of missing data for 30min, more few-minutes gaps

Accuracy **Latency** Quality degradation over time

Latency - uncommon cases

Two close in time cases of data gap (2 & 3 messages) for individual satellite.
Few minutes of repeatable uncommon clock correction latency + data gaps.

Accuracy Latency Quality degradation over time

Metodology

- Simulated data transfer interruptions for various time-periods
- Difference between real-time corrections and delayed data as a measure of quality degradation over time

Accuracy Latency Quality degradation over time

Delayed orbit corrections

After 1 min. 95% of corrections degrades < 2 cm; 4min. < 5cm Correction for satellites with Cesium clocks degrades slightly faster.

Accuracy Latency Quality degradation over time

Delayed clock corrections

After 10 sec. 95% of corrections degrades < 2 cm, 30 sec. < 5cm Correction for satellites with Cesium clocks degrades significantly faster.

ヘロト 人間 とくほど 人間とう

Prediction of orbit corrections Prediction of clock corrections

In field measurements

Real-time in-field kinematic PPP:

- continous positioning in changing conditions:
 - environmental (troposphere, ionosphere),
 - spatial (terrain, horizon obstracles);
- rely on availiable orbits and clocks;
- require constant Ntrip connection.

In case of interruption in Internet connection (eg. outside the GSM range) -

- is it possible to continue measurements?

Methodology

By using the data from the past - predict the corrections:

- how to fit the model?
- what accuracy is required?
- how much past data is needed?
- how far one can predict?

Prediction of orbit corrections Prediction of clock corrections

Polynomial fit

Polynomials of degree 3 and 4 fited into 2-hour time series of orbit correction data (PRN 1: IIF,Rb)

Prediction of orbit corrections Prediction of clock corrections

Polynomial fit

3-deg polynomials: mean=0.000m, StdDev=0.030m, range=(-0.119 : +0.108) 4-deg polynomials: mean=0.000m, StdDev=0.007m, range=(-0.035 : +0.031)

Prediction of orbit corrections Prediction of clock corrections

Results of polynomial orbit predictions (PRN1: IIF, Rb)

Slower degradation: 2cm after 5min.; 5cm after 10min., (for: deg=3, multi=3) (instead of: 2cm after 1min.; 5cm after 4min.)

GNSS PPP Workshop: Reaching Full Potential, 12-14 June 2013, Ottawa

Prediction of orbit corrections Prediction of clock corrections

Results of polynomial orbit predictions (PRN8: IIA, Cs)

Slower degradation: 2cm after 4min.; 5cm after 7min., (for: deg=3, multi=3) (instead of: 2cm after 1min.; 5cm after 4min.)

GNSS PPP Workshop: Reaching Full Potential, 12-14 June 2013, Ottawa

Prediction of orbit corrections Prediction of clock corrections

Clock corrections

None of the prediction method improved the results for clocks.

GNSS PPP Workshop: Reaching Full Potential, 12-14 June 2013, Ottawa

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Prediction of orbit corrections Prediction of clock corrections

Clock corrections

None of the prediction method improved the results for clocks.

Conclusions

- IGS provides real-time corrections for broadcast orbits and clocks;
- In general, RTIGS products meet the target accuracy:
 - RMS=5cm for each orbit component, RMS=9cm for clocks,
 - there are interruptions in data transmission as well as outliers,
 - the correction (especially for clocks) degrades very fast,
 - users should be careful and aware of imperfections;
- In case of interruptions in data transmission:
 - it is possible to extend the lifetime of orbit corrections by 3-deg. polynomial prediction,
 - clock prediction methods gives worse results;
- Guide to use RTIGS products" wolud be helpful:
 - may encourage the scientific community to take advantage of them.