

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Troposphere products for GNSS precise positioning and meteorology

Jaroslaw Bosy, Witold Rohm, Jan Kaplon, Tomasz Hadas, Karina Wilgan, Pawel Hordyniec, Krzysztof Sosnica, Kamil Kazmierski, Jan Sierny

International Workshop on Precision Products for PPP: current status and future perspective May 17 2016, Wuhan University, Wuhan, China

Presentation plan

- 1. Introduction
- 2. Near Real Time products
- 3. Real Time products
- 4. Conclusion

Motivation for GNSS positioning

GNSS Troposphere delay

 $\delta T(z) = m_d(z) \cdot \delta T_{d,0} + m_w(z) \cdot \delta T_{w,0}$

Saastamoinen (Saastamoinen, 1973)

$$\delta T = \frac{0.002277}{\cos z} \left[P + \left(\frac{1255}{T_K} + 0.05 \right) e - \mathrm{tg}^2 z \right]$$

Hopfield (Hopfield, 1969)

$$\delta T = \frac{10^{-6}}{5} \left[\frac{N_{d,0}^{trop} h_d}{\sin\sqrt{\varepsilon^2 + 6.25}} + \frac{N_{w,0}^{trop} h_w}{\sin\sqrt{\varepsilon^2 + 2.25}} \right]$$

GNSS Troposphere delay

GNSS Troposphere delay

Table 4.7: Input parameters for zenith troposphere dry delay models

Model	e	T	P	φ	h	β	κ	inne $(other)$
(Hopfield, 1969, 1971, 1972)		\checkmark	\checkmark					
(Goad and Goodman, 1974)		\checkmark	\checkmark					
(Saastamoinen, 1973)		\checkmark	\checkmark					
(Davis et al., 1985)			\checkmark	\checkmark	\checkmark			
(Baby et al., 1988)		\checkmark	\checkmark		\checkmark	\checkmark		g, R_e
(Elgered et al., 1991)			\checkmark	\checkmark	\checkmark			
(MOPS, 1998)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		DOY, g

GNSS Troposphere delay – mapping functions

Table 4.11: Comparison of selected mapping functions

Funkcja (function)	P	T	е	β	h_T	h	φ	inne (other)	Emin
(Baby et al., 1988)	\checkmark	\checkmark	\checkmark			\checkmark			10°
(Black, 1978)	10000	\checkmark							50
(Chao, 1972, 1974)									10
(Davis et al., 1985)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				50
(Goad and Goodman, 1974)	\checkmark	\checkmark	\checkmark			\checkmark			n/a
(Herring, 1992)	÷	\checkmark				\checkmark	\checkmark		30
(Hopfield, 1969)		\checkmark				\checkmark			n/a
(Ifadis, 1986)	\checkmark	\checkmark	\checkmark						20
(Marini and Murray, 1973)	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		10^{o}
(Niell, 1996)						\checkmark	\checkmark	DOY	30
(Saastamoinen, 1973)	\checkmark	\checkmark	\checkmark			\checkmark			10^{o}
(Yan and Ping, 1995)	\checkmark	\checkmark	\checkmark	\checkmark					2.5°
(Guo and Langley, 2003)	1100					V	\checkmark		2^{o}
(Foelsche and Kirchengast, 2001, 2002)									60

GNSS Troposphere delay for meteorology

GNSS and **METEO** motivation

NRT meteorological products

GNSS positioning users

EUREF Permanent Network troposphere products

IGS Global Network troposphere products

%=TRO 0.01 IGG 12:115:81494 ITR 12:115:68400 12:115:72000 P MIX

+FILE/REFERENCE *INFO_TYPE	INFO							
DESCRIPTION OUTPUT CONTACT SOFTWARE HARDWARE INPUT -FILE/REFERENCE	Wroclaw University of Environmental and Life Sciences/IGG NRT Hourly SINEX and Troposphere SINEX Jan Kaplon (jan.kaplon@igig.up.wroc.pl) Bernese GPS Software Version 5.0 80 cores Intel(R) Xeon E7-4870 @ 2.4GHz, Debian 6.0.4 IGS/EPN/ASG-EUPOS GNSS tracking data							
+TROP/DESCRIPTION								
*KEYWORD_		VALUE(S)_						
ELEVATION CUTOFF	ANGLE		5					
SAMPLING INTERVAL	SAMPLING INIERVAL 30							
TROP MAPPING FUNC SOLUTION_FIELDS_1	TION	WET NIELL TROTOT STDD	EV					
-TROP/DESCRIPTION								
*								
+TROP/STA_COORDINA	TES			8				
*SITE PT SOLN T	STA_X	STA_Y	STA_Z	SYSTEM	REMRK			
BAIA A IP 3	945839.193	1720428.324	4691082.807	11RF08	166			
WROC A 1 P 3 -TROP/STA_COORDINA	835751.214 TES	1177250.080	4941605.366	ITRF08	IGG			
*+TROP/SOLUTION								
*SITEEPOCH	TROTOT STI	DEV						
BAIA 12:115:70200	2348.6	1.4						
WROC 12:115:70200 -TROP/SOLUTION	2337.8	1.0						
%=ENDTRO								

COST-716 Format

COST-716 V2.0a	E-GVAPII				
BIAL 12235M001	Bialystok (Pola	nd)			
TRIMBLE NETRS	TRM41249.00	TZGD			
53.132083 23.138750	191.393	163.157	0.000		
21-NOV-2012 09:00:00	21-NOV-2012 10:	39:30			
IGIG	BERN_V5.0		IGSULT	NONE	
60 60 1440					
0000065					
-999					
09 00 00 ffffffff 2345.4	4 1.5 -9.9	-9.9	-9.9 -9.9	-9.9 999.99 999.99	-9.99 -9.99 -9.999
0					
09 59 00 ffffffff 2349.	5 2.7 -9.9	-9.9	-9.9 -9.9	-9.9 999.99 999.99	-9.99 -9.99 -9.999
0					

ZTD mZTD ZWD IWV P T RH ZTD Gradients Grad. Errors TEC 2345.4 1.5 -9.9 -9.9 -9.9 -9.9 -9.9 999.99 999.99 -9.99 -9.99 -9.999

E-GVAP The EUMETNET EIG GNSS water vapour programme (http://egvap.dmi.dk)

The Network of European Meteorological Services

E-GVAP The EUMETNET EIG GNSS water vapour programme (http://egvap.dmi.dk)

EUMETNET The Network of European Meteorological Services

Network Status@Sun May 8 16:36:13 GMT 2016

E-GVAP "WUEL" - The WUELS contribution

longitude

altitude

17.06200

140.54

http://egvap.dmi.dk

AC	num	bias	RMS	stddev
ASIC	56	2.0	3.9	3.3
GOP1	56	2.5	3.9	3.0
METO	56	2.6	4.4	3.5
ROBH	56	1.9	4.3	3.9
TEST				
ASI1	56	3.0	4.8	3.8
BKGH	55	5.7	6.6	3.5
GOP2	56	1.9	3.5	3.0
GOP3	55	3.1	4.8	3.7
IES2	56	2.6	4.4	3.5
ROBQ	56	2.0	4.6	4.1
ROBT	56	1.7	4.6	4.3
UL01	56	2.2	4.0	3.4
WUEL	56	4.3	5.7	3.7

Notes

 Statistics are updated daily

 GPS ZTD are interpolated to NWP analysis time

Oct 15th, 2012 to Apr 11 2015 (BSW 5.0)

COST Action ES1206 - GNSS4SWEC - Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (http://gnss4swec.knmi.nl)

COST Action ES1206 - GNSS4SWEC - Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (http://gnss4swec.knmi.nl)

NRT DD processing details

Parameter	Value					
Processing type	Post-processing (Double	-differenced)				
Satellite system considered	GPS only					
Observation window	6 hours					
Observation cut-off angle	5°					
Baseline forming strategy	OBS-MAX					
Ambiguity resolution strategy	Baseline length depende	ent:				
	a) < 20km:	SIGMA on L1 and L2,				
	b) 20km to 180km:	SIGMA L5/L3 (wide-lane/narrow-lane),				
	c) > 180km:	QIF (quasi iono-free)				
Ionosphere handling	Baseline length depende	ent:				
	a) < 20km:	Global model (CODE) for L1L2;				
	b) 20km to 180km:	Global model (CODE) for L5 and HOI L3;				
	c) 180km to 1000km:	Global model (CODE) + stochastic				
		ionosphere parameters estimation (QIF)				
Troposphere handling	Phase observables screening stage:					
	a) A priori model DRY GMF,					
	b) Site specific paramete	ers WET GMF (ZTD spacing: 2h; no constraining),				
	Final solution stage:					
	a) A priori model: DRY G	MF,				
	b) Site specific parameters: WET GMF (ZTD spacing: 30min; no constraining;					
	gradient model: CHENHI	ER Chen and Herring (1997), gradient spacing: 6h)				
	Product output:					
	Relative constraining over	er 1 hour (3mm for ZTD and 0.5 mm for gradients).				
Reference frame for epoch solution	IGS and ARGN IGb08 co	ordinates and velocities				
Method of referencing epoch solutions	Minimum constraining c	on all reference station positions.				

NRT PPP processing details

Processing type	Post-processing (Zero-differenced)
Satellite system considered	GPS only
Observation window	12 hours
Observation cut-off angle	5°
Ambiguity resolution strategy	None
Ionosphere handling	Global model (CODE) for HOI L3;
Troposphere handling	 Phase observables screening stage: a) A priori model DRY GMF, b) Site specific parameters WET GMF (ZTD spacing: 2h; no constraining),
	Final solution stage: a) A priori model: DRY GMF, b) Site specific parameters: WET GMF (ZTD spacing: 30min; no constraining; gradient model: CHENHER (<i>Chen and Herring (1997), Effects of atmospheric</i> <i>azimuthal asymmetry on the analysis of space geodetic data, Journal of</i> <i>Geophysical Research, 102(B9), pp. 20489-20502</i>) gradient spacing: 1h)
	Product output: Relative constraining over 1 hour (3mm for ZTD and 0.5 mm for gradients).
Reference frame for epoch solution	IGb08 coordinates of satellites
Method of referencing epoch solutions	Free solution

New "WUEL" network (ASG-EUPOS + SmartNet)

Since Aug 26, 2015 12:00 UTC (BSW 5.2)

Quality assesment of new NRT service

Comparison of ZTD estimates with CODE Rapid ZTDs on common IGS stations for the last three weeks of September 2015

APPLICATION OF TROPOSPHERE MODEL FROM GNSS DATA INTO PPP

Bernese GPS Software (postprocessing)

Solution	Model a-priori	Model ZTD	ZTD Est.	Resolution
No model	without	without	no	n/a
Saastamoinen	SA	Saastamoinen	no	30 s.
Estimation	SA	Saastamoinen	yes	30 s.
NRT-ZTD	without	NRT	no	1 h.
Meteo ZTD	meteo	Saastamoinen	no	1 h.

APPLICATION OF TROPOSPHERE MODEL FROM GNSS DATA INTO PPP – comparison with IGS results

GNSS-WARP software

GNSS-WARP Wroclaw Algorithms for Real-time Positioning

- original, self-developed, state-of-the-art PPP software
- purpose: multi-GNSS RT-PPP & PPP-RTK algorithms development
- GNSS: GPS+GLO, GAL & BDS only with MGEX products, RT
- implemented in Matlab (2015a) + Instrument Control Toolbox
- BNC used as RTCM decoder of IGS RTS streams

RT-ZTD optimization (GNSS-WARP v2.1m):

- redeveloped and optimized for multi-station, continuous processing
- performance: >10stations / 1 second @1CPU (currently: >200 stations every 60 seconds)

Strategy:

• PPP, static positioning, VMF, IGS03, IERS 2010 models

GNSS-WARP status

	GPS	GLONASS	Galileo	BeiDou
SP3+CLK	operational	operational	operational	test phase
broadcast	operational	operational	operational	tracked
real-time	operational	IOD problems	test phase	not available

GNSS-WARP software – real-time troposphere service

APPLICATION OF TROPOSPHERE MODEL FROM GNSS DATA INTO RT PPP

Solution with ZTD estimation

Solution with NRT ZTD input

APPLICATION OF TROPOSPHERE MODEL FROM NWP AND GNSS DATA INTO RT PPP - Methodology

APPLICATION OF TROPOSPHERE MODEL FROM NWP AND GNSS DATA INTO RT PPP - Data

GNSS

- 277 Polish stations
- near-real time
- ZTD with 1 h resolution
- product of Bernese software v5.2
- post-processing
- double-differenced

- WRF Weather Research and Forecasting
- 219x237 horizontal nodes
- 4x4 km² grid
- 47 vertical levels
- 24-hour forecasts at 0:00 UTC
- p, T, e with 1 h resolution

APPLICATION OF TROPOSPHERE MODEL FROM NWP AND GNSS DATA INTO RT PPP – Collocation - ZTD results

APPLICATION OF TROPOSPHERE MODEL FROM NWP AND GNSS DATA INTO RT PPP – troposphere constrainig (1)

Fig. 3. Results of real-time kinematic PPP with ZTD constrained to COMEDIE model, station WROC, DoY 337-343, 2015

APPLICATION OF TROPOSPHERE MODEL FROM NWP AND GNSS DATA INTO RT PPP – troposphere constrainig (2)

Fig.6. Comparison of unconstrained and COMEDIE-constrained solutions (top - absolute differences in coordinates, bottom - general statistics for solutions w.r.t. static weekly PPP solution)

APPLICATION OF TROPOSPHERE MODEL FROM NWP AND GNSS DATA INTO RT PPP – troposphere constrainig (3)

Fig.7. Coordinate residuals w.r.t. static weekly PPP solution from unconstrained (red) and COMEDIE-constrained (green) solutions, imposed re-initialization every 2 hour, 2-hour period overlaid, station WROC, DoY 337-343, 2015

CONCLUSIONS

- **1. NRT ZTD future developments:**
 - to reduce the latency to 5 minutes (from 20 minutes)
 - to increase the processing interval to 15 minutes (from 1 hour)
 - to support Multi-GNSS data (currently GPS and GLONASS solution)
 - improvements in PPP solution
 - development of optimal ZTD and gradient constraining strategy to obtain consistency with NWP models
 - NRT estimation of Slant Tropospheric Delays
- 2. Real-Time future developments:
 - continuous processing (without re-initializations)
 - full GNSS constellation
 - ambiguity fixing
 - estimation of Slant Tropospheric Delays
 - Mapping functions development

GNSS&Meteo WUELS working group

Dr. Witold Rohm Chair of Meteo section Chair of IAG WG 4.3.6 Troposphere Tomography

GNSS meteorology

Prof. Jarosław Bosy Chair of WG Vice-Chair of IAG Sub-Commission 4.3: Atmosphere Remote Sensing

Positioning 🗸 SLR&GNSS

Pawel Hordyniec PhD student ROWUELS software

Dr. Jan Kaplon GNSS and Meteo NRT services

Karina Wilgan PhD student GNSS and meteo integration

Jan Sierny PhD student and IT support GNSS and meteo data base

Dr. Tomasz Hadas GNSS-WARP software Chair of IAG WG 4.3.4 Ionosphere and Troposphere Impact on GNSS Positioning

Dr. Krzysztof Sosnica Chair of IAG JSG0.21: Fusion of multi-technique satellite geodetic data

Kamil Kaźmierski PhD student Multi-GNSS

IAG Commission 4 Positioning and Applications Symposium Wroclaw Poland, September 4-7, 2016

WROCLAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES INSTITUTE OF GEODESY AND GEOINFORMATICS

Abstract submission: June 15, 2016 Notification of acceptance: July 1, 2016 Registration: July 31, 2016

http://www.igig.up.wroc.pl/iag2016/

Multi-GNSS real-time troposphere delay estimation

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Thank You!

jaroslaw.bosy@up.wroc.pl

Presenting author:

Professor Jaroslaw Bosy Institute of Geodesy and Geoinformatics Wroclaw University of Environmental and Life Sciences

Coresponding authors:

- meteo: witold.rohm@up.wroc.pl
- real-time: tomasz.hadas@up.wroc.pl
- near real-time: jan.kaplon@up.wroc.pl
- multi-GNSS: kamil.kazmierski@up.wroc.pl

www.up.wroc.pl