MOŻLIWOŚCI ZASILANIA WIELORÓZDZIELCZEJ BAZY DANYCH TOPOGRAFICZNYCH Z WYBRANYCH PUBLICZNYCH REJESTRÓW GEOREFERENCYJNYCH

POSSIBILITIES TO EXCHANGE GEOGRAPHIC INFORMATION BETWEEN MRDB AND SELECTED RESOURCES OF THE PUBLIC ADMINISTRATION

Joanna Bac-Bronowicz¹, Robert Olszewski²

¹Instytut Geodezji i Geoinformatyki, Uniwersytet Przyrodniczy we Wrocławiu
²Zakład Kartografii, Politechnika Warszawska

Słowa kluczowe: INSPIRE, SDI, bazy danych topograficznych, bazy danych tematycznych, harmonizacja baz danych, integracja danych

Keywords: INSPIRE, SDI, topographic databases, thematic databases, databases harmonization, data integration

Wprowadzenie


Koncepcja budowy infrastruktury danych przestrzennych w Polsce zakłada opracowanie kilku baz danych przestrzennych gromadzących podstawowe dane referencyjne, będących zarazem swoją kanwą geometryczną dla pochodnych opracowań tematycznych. Budowa
Mogłości harmonizacji i zasilania WTBD z baz tematycznych
Baza danych SOZO i HYDRO

W ramach rozwoju technologii powstawania baz SOZO i HYDRO podjęto próbę opracowania zuniﬁkowanego systemu umożliwiającego import danych TDB, zapewniającego maksymalne wykorzystanie danych źródłowych. Do automatyzacji procesu zasilania baz SOZO i HYDRO danych referencyjnych opracowano narzędzia pozwalające na łatwą modyﬁkację procesu zasilania baz SOZO i HYDRO poprzez konﬁgurację tekstowych plików parametrycznych. Elementem opracowanego systemu są także narzędzia złożonej kontroli geometryczno-opisowej baz danych tematycznych.

Autorzy zaproponowali także wykorzystanie istniejących zależności topologicznych między danymi topologicznymi oraz wprowadzenie analogicznych zależności pomiędzy danymi o charakterze tematycznym. Opracowano także koncepcję systemu zarządzania bazami SOZO i HYDRO. System ten umożliwia zarządzanie danymi SOZO i HYDRO pochodzącymi z opracowań arkusowych, połączonych pojedynczych opracowań oraz z ciągłych baz danych wywodzących zgodnie z wytycznymi GIS-3 i GIS-4. Opracowane koncepcje zostały uwzględnione w projekcie rozporządzenia wykonawczego do projektu ustawy o infrastrukturze informacji przestrzennej definiującego model pojęciowy i sposób gromadzenia informacji w bazach danych SOZO i HYDRO.

Mapa geologczno-gospodarcza Polski (MGGP) i mapa geosrodowiskowa Polski (MGP)

Celem opracowania bazy danych MGGP jest gromadzenie informacji o występowaniu kopalin w strefie przypowierzchniowej i głębokiej oraz o gospodarce złožami na tle wybra-
nych elementów górnictwa i przetwórstwa kopalń, hydrogeologii, geologii inżynierskiej, przyrody, krajobrazu i zabytków kultury.

Mapa geologiczno-gospodarcza umożliwia przedstawienie:
- perspektyw i prognoz występowania kopalń,
- stanu zagospodarowania i klasyfikacji złož kopalń,
- rzeczywistych i potencjalnych zagrożeń środowiska przyrodniczego związanych z występowaniem złož oraz eksploatacją i przeróbką kopalń,
- wybranych elementów hydrogeologicznych w celu ochrony wód powierzchniowych i podziemnych przed nieracionalnym zagospodarowaniem,
- obiektów i obszarów chronionych,
-warunków podłoża budowlanego.


Anализując zakres treści bazy danych geosrodowiskowych oraz baz SOZO i HYDRO, a także model pojęćnie istniejących i planowanych opracowań referencyjnych, autorzy (Be- rus, Kołoźdiej, Olszewski, 2007) zaproponowali wiele modyfikacji dotyczących zarówno struktury, jak i sposobu wykonywania w. b. baz danych. Najstabilniejsze znaczenie ma koncepcja wykorzystania cyfrowych danych referencyjnych grupowanych w opis do zasilań systemu produkcji mapy geologiczno-gospodarczej i geosrodowiskowej.

Leśna mapa numeryczna

Wykorzystywane obecnie w gospodarce leśnej mapy zostały opracowane na etapie sporządzonych i obowiązujących w nadleśnictwach planów administracyjnych. Są to mapy, opracowane w technice analogowej, jak też mapy wykonane w technice numerycznej – parametrami odpowiadające przyjętym w tym zakresie standardom określonym w "Standardzie leśnej mapy numerycznej (SLMN, 2001). SLMN został przyjęty Zarządzeniem Nr 74 Dyrekto- ra Generalnego Lasów Państwowych z dnia 23 sierpnia 2001 roku w sprawie zdefiniowania standardu leśnej mapy numerycznej dla poziomu nadleśnictwa oraz wdrażania systemu informacji przestrzennej w nadleśnictwach. W roku 2007 powstały nowe mapy numeryczne nad- leśnictw, dzięki czemu osiągnięto bardzo zaawansowany stan realizacji włączania map numerycznych w działalności podstawowej jednostki Lasów Państwowych, jaką jest nadleśnictwo. Aktualnie około 85% Lasów Państwowych posiada wdrożoną leśną mapę nume- ryczną, (LNM) zgodną z obowiązującym standardem. Ponadto ważnym zagadnieniem jest ciągła aktualizacja map w nadleśnictwach, w których mapa już funkcjonuje. LNM zawiera wiele unikalowych informacji, które nie ma w TBD, a są one bardzo potrzebne dla szeroko

pojego użytkownika, w tym dla urzędów i instytucji, szczególnie dla służb związanych z działaniami kryzysowymi.

Autorzy po analizie danych i konsultacjach w ośrodkach branżowych leśnictwa wybrali dane będące w posiadaniu Lasów Państwowych, które można wprowadzić do WTBD. Po przeanalizowaniu modeli pojęciowych poszczególnych grup obiektów w SLMN wybrano: LAS, UPRAWA, MLONGIK oraz dane wektorowe z mapy siedlisk Natura 2000, wyparte od założenia na SLMN (w części gruntów będących w stanie posiadania w PT oraz posiadających LMN) i VMAP L2 w granicach obszarów Natura 2000 poza gruntami LMN. Współdziałanie WTBD z SLMN było możliwe po modyfikacjach definicji grup obiektów w WTBD, z jednoczesną zmianą wymaganych atrybutów (dane obligatoryjne). Autorzy postępują nastę- pującą modyfikację w zawartości i sposobie pozyskania danych do warstw WTBD:
- LAS – należy uzupełnić o atrybuty dotyczące składu gatunkowego pobierając dane z LMN,
- UPRAWA, MLONGIK – zmodyfikować definicje obiektów.

Ponadto proponuje się wykorzystać do zasilań WTBD:
- DROGI I CIEK – jako dane źródłowe do wydzielania w WTBD drog i cieków na terenach leśnych można wykorzystać dane zawarte w LMN ze względu na ich kompletność,
- OBIEKTY INNE – nowy obiekt WTBD o znaczeniu orientacyjnym np.: ambony my- śliwskie, paśnik.

Można także zaproponować pozyskanie w WTBD zewnętrznego obrysu warstwy las z ortofotomapy (w WTBD warstwa PKLA_A), natomiast wypełnienie wnetrzn terenu leśnych elementów uzyskanymi z LMN. Na rysunku 1 przestawiono analogiczny fragment lasu w WTBD i LMN. Możliwość zasilań WTBD danymi nie LMN sprawdzono dla arksza M-33-34-A przy współpracy z Biurem Urządzania lasu i Geodezji Leśnej w Brzegu.

Elektroniczna mapa navigacyjna


Ze względu na powszechność standardu ENC oraz stosowanie jej nie tylko na obszarze Morza Bałtyckiego, ale również większości wybrzeży Europy i dużej części morza naszego globu, nie można ingerować w jej strukturę. Możliwe jest jedynie zaczerpnięcie odpowiednich elementów do poszerzenia lub zasilań WTBD (rys. 2).
Kategorią, która może być najbardziej rozbudowana w WTBD na podstawie ENC, jest hydrograﬁa. Do WTBD jest ona ograniczona przed wszystkim do elementów śródlądowych, a opis sytuacji spotykanych na morzu, w obszarze przybrzeżnym jest mało dokładny. Na mapach morskich znajduje się dokładny opis wybrzeża. Do WTBD można wprowadzić informacje o bardzo często spotykanych plawach, czy też różnego rodzaju oznakowaniach świetlnych związanych z oznaczeniem torów wodnych w obszarze przybrzeżnym. Tory wodne są analogiczne do terenów komunikacyjnych drogowych czy kolejowych obecnych w WTBD. Poszerzenia w WTBD wymaga również częściej dotyczące infrastruktury i uzupełnienia terenu związanego z komunikacją na szlakach wodnych oraz informacje dotyczących topografii obszarów znajdujących się poniżej poziomu morza.

Mapa numeryczna terenów kolejowych


W celu sprawdzenia wszystkich możliwości wykorzystania dostępnych informacji, dostępnionych i autoryzowanych przez PKP, wyróżniono i zaproponowano harmonizację w WTBD dwudziesto ośmiu grup obiektów należących do pięciu kategorii WTBD: sieci dróg i kolei, kompleksy pokrycia terenu, budowle i urządzenia, kompleksy użytkowania terenu oraz obiekty inne z bazami kolejowymi. Na rysunku 3 przedstawiono zasilenie WTBD na poziomie 3; SK – sieci dróg i kolei, poziom 1, SK KL – tory lub zespoły torów, poziom 2, SK KL01 – zespół torów kolejowych, poziom 3.


Rys.1. Porównanie danych wyjściowych do WTBD: a – z topograficznej bazy danych (TBD), b – z leśnej mapy numerycznej (LMN) możliwych do zastosowania w WTBD.
Rys. 2. Pasmo portowe Szczecin: a – na elektronicznej mapie nawigacyjnej (ENC), b – na komponencie WTBD z VMap L2, c – na komponencie WTBD z wersji użytkowej VMap L2u (Bac-Bronowicz, Berus, Kowalski, Olszewski, 2007)
Podsumowanie

Jednym z celów tworzenia WBTD jest gromadzenie źródełowych danych topograficznych, służących do opracowania innych systemów informacji geograficznej. Istotne jest zatem także zdefiniowanie podstawowej struktury bazy referencyjnej, które umożliwi z jednej strony pełne wykorzystanie już istniejących danych tematycznych, a z drugiej za pozwoli na poszerzenie kręgu potencjalnych użytkowników tej bazy. Opracowana w projekcie celowym nr 6 T 12 2005C/06552 koncepcja wielorodzicielczej bazy danych topograficznych, wykorzystująca materiały stanowiące pgzik: zapewnienie optymalne wykorzystanie dostępnych obecnie baz topograficznych i umożliwia integrację innych opracowań wykonanych z zastosowaniem wieloaspektowych zasad tworzenia WBTD (Bac-Bronowicz, Głazewski, Kowalski, Olszewski, 2009). Dotyczy to nie tylko zabezpieczenia praktycznych potrzeb związanych z planowaniem i realizacją inwestycji, prognoz oceny oddziaływania na środowisko przy pożywianiu środków z funduszy unijnych, czy zarządzaniem przy różnym rodzaju zagrożeń, kryzysach i katastrofach, ale pozwala łączyć doświadczenia wielu dyscyplin dla wielowymiarowego projektowania różnego rodzaju przedsięwzięć regionalnych, krajowych i międzynarodowych.

Realizując te cele opracowano metodkę harmonizacji modelu pojęciowego wybranych baz danych tematycznych z pgzik: Mapy Sozologicznej (SOZO), Mapy Hydrograficznej (HYDRO), a także – uspójnienia danych pochodzących z innych źródeł, takich jak: leśna mapa numeryczna (LMN), mapa geośrodowiskowa i hydrogeologiczna oraz rozważano dodatkowo inne możliwości integracji i harmonizacji w WBTD – np. z grupami obiektów w Elektronicznej Mapie Nawigacyjnej (ENC). Opracowanie WBTD wymagało także uspójnienia mechanizmów wymiany danych odniesionych przestrzennie z wielu rejestrów państwowych np. Państwowego Rejestru Nazw Geograficznych (PRNG), Państwowego Rejestru Granic (PRG), Rejestru Jednostek Podziału Terytorialnego Kraju TERYT. W projekcie szczegółowo opracowano prototypu systemu informatycznego PRNG, umożliwiającego udostępnianie nazw geograficznych zgromadzonych w rejestrze, ich edycję i aktualizację. Wykorzystywane wspólnych, łatwo dostępnych, identyfikatorów obiektów w bazach danych WBTD z jednej strony zmniejszy przechodzność ich tworzenia, z drugiej – ułatwi ich integrację. Próbę przeprowadzone w czasie wykonywana VMap L2+i TBD, na zlecenie GUGiK i urzędów marszałkowskich biorących udział w projekcie, dowiodły, że stosowanie identyfikatorów z bazy PRNG nie podnosi kosztów wykonania, a uzyskane korzyści są oczywiste.

Wielorodzicielca baza danych topograficznych i tematycznych integruje dane potrzebne do prowadzenia i planowania różnego rodzaju zadań na podstawie georeferencyjnych rejestrów państwowych. Harmonizacja zbiorów georeferencyjnych poprawi efektywności wykonywania zadań, w szczególności w zakresie planowania przestrzennego, planowania gospodarczego, realizacji inwestycji budowlanych, badań i analiz statystycznych, zarządzania kryzysowego, wyeliminuje gromadzenie tych samych danych przez różne organy administracji itd. Bardzo ważnym efektem, nawet tylko częściowej harmonizacji zbiorów danych w rejestrach państwowych jest ułatwienie przepływu i wymiany informacji między różnymi organami administracji państwowej i samorządowej.
The paper characterises some existing state spatial databases stored by various institutions. The methodology to harmonise them has also been proposed. New digital maps of forest districts were developed in 2007, what allowed to include, at the highly advanced level, digital maps in the activities performed by the basic unit of the State Forests, i.e. a forest district. At present, about 85% of the State Forests apply the digital map compliant with obligatory standards. Besides, permanent updating of maps in forest districts, applying those maps, is also an important issue. The paper specifies settlements concerning analysis of data stored in the State Forests, which may be used for supplying reference databases, such as forest, crops, thicker etc. Similar analyses were also performed for data concerning the Baltic offshore zone. Based on comparison of the area of the entire country and the length of the coastline of the Baltic Sea adjoining Poland, together with inland waters, it has been noticed that this is the area which should not be neglected in the topographic database for Poland. The National Hydrographical Offices are responsible for supplying reliable and updated information about those areas and for systematic updating of those data. Data supplied together with the object-class standards as well as their attributes allow for describing the majority of real objects, which should be placed on marine charts. The paper contains a proposal of widening the basic reference database by marine hydrographical objects, as well as proposals concerning methods of visualisation of such information.

Other spatial databases, which have been reviewed by the authors with respect to possibilities of their harmonisation with the reference database, are: the Register of Lands and Buildings, the Land Parcels Identification System (LPIS) and database maintained by the Polish State Railways.

dr Joanna Bac-Bronowicz
bac-bronowicz@gkf.ar.wroc.pl

dr inż. Robert Olszewski
r.olszewski@gik.pw.edu.pl

Abstract

In Poland, many spatial databases have been recently created. All official, both reference (topographic) and thematic databases should be the basis for analysis performed for the needs of the central, local government administration and state institutions. Exchange of data between particular registers not necessarily always concerns geometry; sometimes integration of attribute data, related to explicitly definable reference objects may be sufficient. Unfortunately, in the process of creation of particular registers and spatial databases, such rapid development of the geo-information sector has not been expected. This resulted in the problems concerning integration of data, which originated from various sources.

Due to the lack of a uniform and complete topographic database in Poland, geographic information is stored independently by various bodies, institutions and organisations which use different standards and software.