

University of Stuttgart Germany

Contribution of Galileo to real-time GNSS meteorology

Tomasz Hadas and Thomas Hobiger Institute of Navigation, University of Stuttgart, Germany

1. Motivation

Real-time GNSS meteorology, i.e. estimation of Zenith Troposphere Delay (ZTD), is of particular interest for weather nowcasting. The achievable ZTD accuracy lies between 5 and 20 mm. So far limited improvements of multi-GNSS solutions with respect to GPS-only solutions were reported, because of the lower accuracy of real-time products for other GNSS and due to the smaller number of available Galileo and BeiDou satellites. However, the recent development of Galileo's space segment already allows for worldwide Galileo-only positioning. while the availability and accuracy of real-time products for Galileo are also comparable to GPS products.

3. Results

3.1 Availability of real-time solutions

Institute of Navigation

- 12 IGS stations
- test period: 01.01.2019 31.12.2019

Apr 2019 May 2019 Jun 2019 Jul 2019 Aug 2019 Sep 2019 Oct 2019 Nov 2019 Dec 2019

Fig. 2: Daily (left) and mean (right) availability of real-time ZTD from GPS (G), Galileo (E) and GPS+Galileo (G+E) solutions in 2019

Fig. 3: Time series of real-time ZTD (from GPS, Galileo, GPS+Galileo) for station REYK in 2019 (left) and zoom to DoY 41-47, 2019 (right)

reference solution: IGS Final troposphere

2.2 GNSS data processing

uncombined & undifferenced (raw) PPP model pseudorange P_i^s and carreir phase L_i^s for observations:

 $P_i^s - \rho_0^s + c\delta t^s - m_h^s Z_h - \Delta_P^s$ $= e_r^s \delta X_r + c \left(\delta t_r + I S B_S^G \right) + Z_w m_w^s + f_1^2 / f_i^2 I^s$

 $L_i^s - \rho_0^s + c\delta t^s - m_h^s Z_h - \Delta_P^s$ $= \boldsymbol{e}_{\boldsymbol{r}}^{\boldsymbol{s}} \boldsymbol{\delta} \boldsymbol{X}_{\boldsymbol{r}} + c \left(\delta t_{\boldsymbol{r}} + ISB_{\boldsymbol{S}}^{\boldsymbol{G}} \right) + Z_{\boldsymbol{w}} m_{\boldsymbol{w}}^{\boldsymbol{s}} - f_{1}^{2} / f_{i}^{2} I^{\boldsymbol{s}} + \lambda_{i} N_{i}^{\boldsymbol{s}}$

processing strategy

Frequencies	GPS L1/L2 Galileo E1/E5a
Observation σ	$\sigma_0 = 0.30 \text{ m for } P_i$ $\sigma_0 = 0.01 \text{ m for } L_i$
Elevation weighting	1/sin(e)
Elevation cut-off angle	3°
Sampling rate	60 s
Troposphere delay	VMF1-FC wet delay estimated as random walk process no gradients
Satellite orbits and clocks	real-time CNES stream (mountpoint CLK93)
Code and phase biases	observation specific (from CLK93)
Solution type	static with float ambiguities
Correction models	phase wind-up, relativistic delays, solid earth tides
Receiver PCO and PCV	igs14.atx; E1/E5a from L1/L2

4. Conclusions

Availability of real-time ZTD solutions:

- similar to IGS Final ZTD (~95%, except ULAB due to missing observations);
- could be even higher by >2% if no failure of Internet conection at user side (end of June, 2019); Galileo-only solution suffers from system outage (July 11-18, 2019, i.e. ~2% time of the year); 1% (3.5 days!) gain in availability with GPS+Galileo solution compared to GPS-only (e.g. >45% more solutions on April 6, 2019 for all stations, 82% more solutions for ULAB on February 10, 2019). Uncertainty of estimated ZTD (σZTD):

2.3 Solutions

GPS only	(31 PNR, avg. observed: 10)
Galileo only	(22 PRN, avg. observed: 7)
GPS+Galileo	(53 PRN, avg. observed: 17)

- σZTD from Galileo-only solution is significantly smaller since mid-February 2019 (4 satellites announced);
- reduced by a factor of two to three for GPS+Galileo solution compared to GPS-only solution.

Agreement between ZTD products:

- all real-time solutions are consistent to each other ($R^2 > 0.99$); GPS minus Galileo: RMSE_{ZTD} = 9.0 mm;
- Galileo underestimates real-time ZTD with respect to real-time ZTD from GPS (missing PCO, PCV?);
- std. dev. of real-time ZTD vs. IGS Final ZTD: 7.9 mm, 8.9 mm, 7.7 mm for GPS, Galileo, GPS+Galileo;
- GPS+Galileo improves precision of real-time ZTD by 3% on average (up to 6% for station ULAB).

5. Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 835997 (Real-Time GNSS for European Troposphere Delay Model, ReS4ToM)

Contact information

Tomasz Hadas: tomasz.hadas@nav.uni-stuttgart.de Homepage: www.nav.uni-stuttgart.de

