Towards Real-time GNSS Troposphere Delay Monitoring Service for Poland

Tomasz Hadas, Kaplon Jan, Bosy Jaroslaw

Institute of Geodesy and Geoinformatics Wroclaw University of Environmental and Life Sciences

5th International Colloquium Scientific and Fundamental Aspects of the Galileo Programme Session 3A: E3 Atmospheric Research

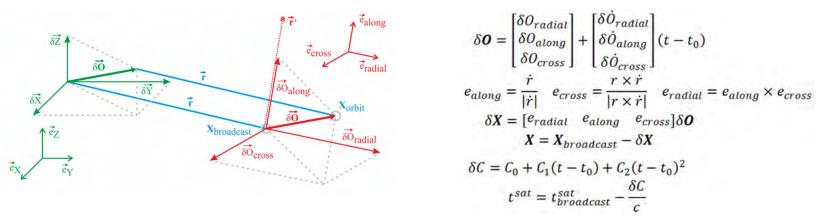
Presentation plan

1. Introduction:

- Real-time PPP
- GNSS for NWP

2. Near-real time ZTD service

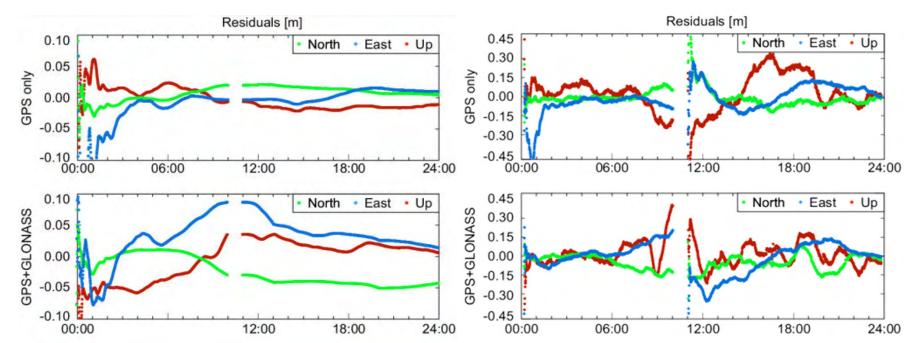
- Processing strategy
- Quality of results
- **3. Development of real-time ZTD service**
 - GNSS-WARP software
 - Benchmark campaigns
 - Current status


Real-time PPP GNSS for NWP

IGS Real-Time Service

IGS RTS - IGS Real Time Service

• real-time orbit and clock correction (SSR RTCM) + broadcast messages (RCTM)



- official products for GPS: 5cm for orbits, 0.3ns (8.5cm) for clocks
- unofficial for GLONASS: 13cm for orbits, 0.8ns (24.5cm) for clocks
- availability >90%, latency ~30 sec.

Hadaś T., Bosy J.: *IGS RTS precise orbits and clocks verification and quality degradation over time,* GPS Solutions, Vol. 19, 2015, pp. 93-105

Real-time PPP GNSS for NWP

Real-time PPP in static / kinematic mode

Time series of residuals for GPS only with IGS01 stream (top) and GPS+GLONASS with IGS03 stream (bottom) real-time positioning in static (left) and kinematic (right) mode for station WROC, DOY 114, 2014

	GPS only		GPS+GLO			GPS	only	GPS [.]	+GLO
	Mean S	td.Dev.	Mean	Std.Dev.		Mean	Std.Dev.	Mean	Std.Dev.
North	0.005	0.002	0.025	0.013	North	0.007	0.03	0.015	0.035
East	0.007	0.006	0.012	0.018	East	0.004	0.027	0.004	0.032
Up	0.001	0.006	-0.033	0.011	Up	0.057	0.12	-0.031	0.092

Real-time PPP GNSS for NWP

GNSS troposphere monitoring

PPP estimates: X,Y,Z, dtrec, troposphere zenith delays (**ZTD**) and gradients

09:00 AM

09:00 PM

12

10 8

Integrated Water Vapour (IWV):

$$ZHD = [0.0022768 m/mbar] \cdot \frac{P_0}{f(\phi, h)}$$
$$f(\phi, h) = 1 - 0.00266 \cos(2\phi) - 0.00000028h \approx 1$$
$$ZWD = ZTD - ZHD$$

05:00 AM

05:00 PM

$$IWV = rac{ZWD}{10^{-6}(k_2' + k_3/T_m)R_v}$$

01:00 AM

01:00 PM

IWV [kg/m²]

Example of the Integrated Water Vapour (IWV) 2D distribution over the area of Poland calculated for November 7, 2012, shown as a time series with 4 hours interval

 P_0 - surface air pressure [mbar]

h - point height [m]

 ϕ - point latitude [rad]

 T_0 - surface air temperature

 k'_2, k_3 - empirical coefficients

 $R_v = 461.525 \left[J/(kg \cdot K) \right]$

 $T_m - 70.7 + 0.72T_0$

Real-time PPP GNSS for NWP

NWP requirements

Running projects / actions:

- EIG EUMETNET, GNSS Water Vapour Programme (E-GVAP-II)
- Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC)

Hourly ZTD	Treshold	Target	Optimal
Accuracy	15 mm	10 mm	5 mm
Timeliness	2 h	1.5 h	1 h
Spatial coverage	Europe	Europe + N. America	Global
Horizontal Sampling	200 km	100 km	30 km


Sub-hourly ZTD	Treshold	Target	Optimal
Accuracy	15 mm	10 mm	5 mm
Timeliness	1 h	30 min	15 min
Spatial coverage	Europe	Europe to National	Regional to National
Horizontal Sampling	100 km	50 km	20 km

Real-time PPP GNSS for NWP

Commercial RTK networks in Poland

ASG-EUPOS: 102 in Poland + 23 foreign: - 125 GPS / 73 GLO / 39 GAL - permanent service since 2009 - GPS RTN (+GLO at some areas)

Leica SmartNet: now: 135 stationsin Poland - GPS, GLO, GAL, BDS, QZSS

- operational + developments
- GNSS RTN

TPI Net PRO: 136 in Poland - GPS, GLO, GAL

- operational

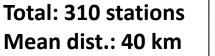
- GNSS RTN

now: 56 in Poland - GPS, GLO, GAL, 1 BDS - under development?

- GNSS RTN

4 commercial RTK/RTN networks (2 still under developments) with > 370 stations

WUELS cooperates with ASG-EUPOS and Leica SmartNet:

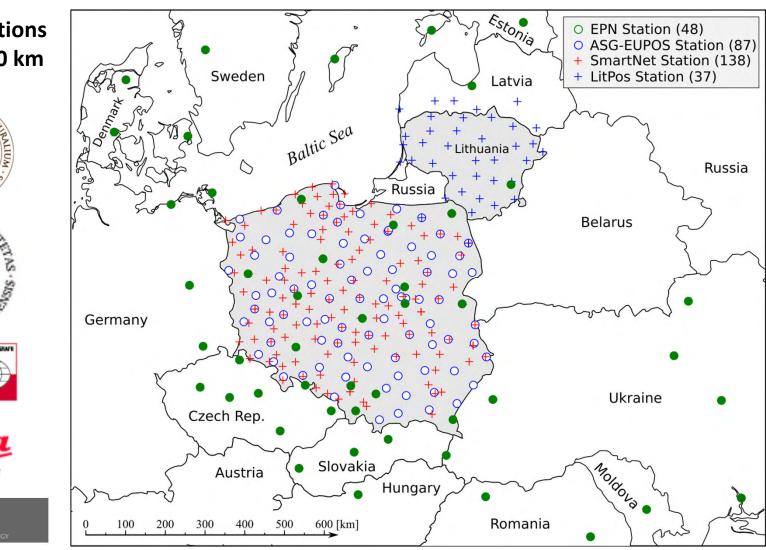

- hourly RINEX files from both network, including foreign stations
- 1Hz data streams from ~100 Leica SmartNet stations
- hopefully soon 1Hz data streams from ASG-EUPOS and +30 from Leica SmartNet

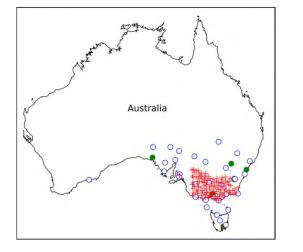
NRT DD processing details

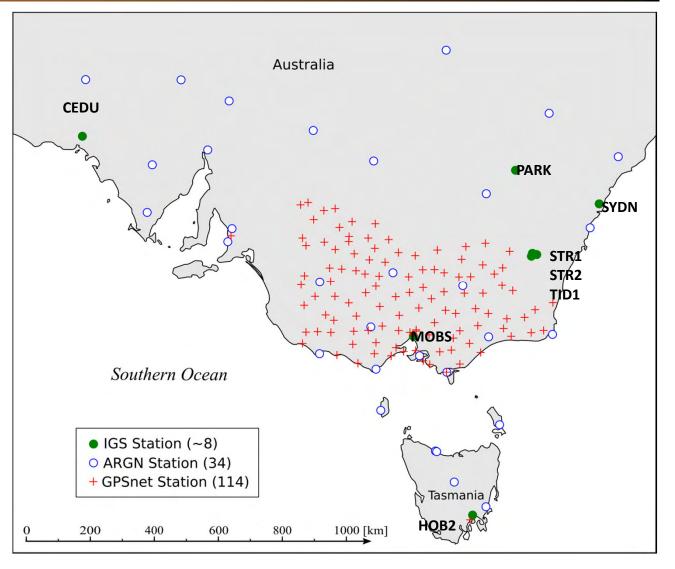
Parameter	Value			
Processing type	Post-processing (Double	e-differenced) with IGU orbits and clocks		
Satellite system considered	GPS only			
Observation window	6 hours			
Observation cut-off angle	5°			
Baseline forming strategy	OBS-MAX			
Ambiguity resolution strategy	Baseline length depender	ent:		
	a) < 20km:	SIGMA on L1 and L2,		
	b) 20km to 180km:	SIGMA L5/L3 (wide-lane/narrow-lane),		
	c) > 180km:	QIF (quasi iono-free)		
Ionosphere handling	Baseline length depender	ent:		
	a) < 20km:	Global model (CODE) for L1L2;		
	b) 20km to 180km:	Global model (CODE) for L5 and HOI L3;		
	c) 180km to 1000km:	Global model (CODE) + stochastic		
		ionosphere parameters estimation (QIF)		
Troposphere handling	Phase observables scre	ening stage:		
	a) A priori model DRY GMF,			
	b) Site specific parameters WET GMF (ZTD spacing: 2h; no constraining),			
	Final solution stage:			
	a) A priori model: DRY GMF,b) Site specific parameters: WET GMF (ZTD spacing: 30min; no constraining;			
	gradient model: CHENHER Chen and Herring (1997), gradient spacing: 6h)			
	Product output:			
	Relative constraining over 1 hour (3mm for ZTD and 0.5 mm for gradients).			
Method of referencing epoch solutions	Minimum constraining on all reference station positions.			

Processing strategy Quality of results

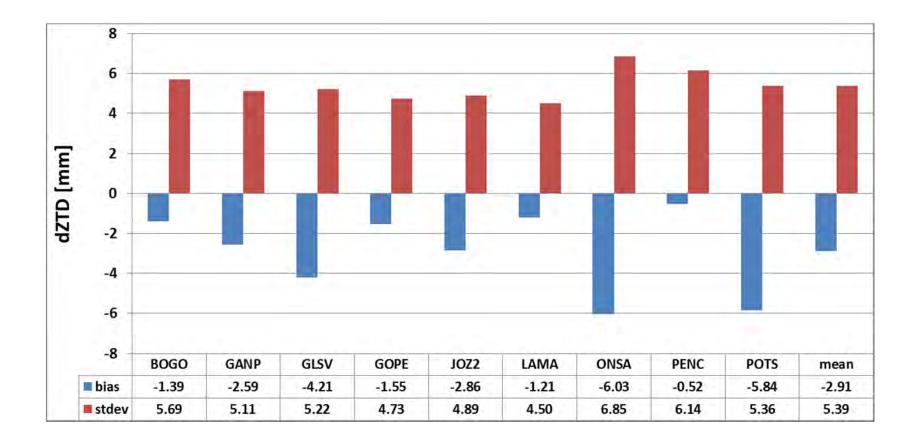
GNSS NRT ZTD network




Processing strategy Quality of results


"VICNET" network

Total: 156 stations Mean dist.: ~70 km



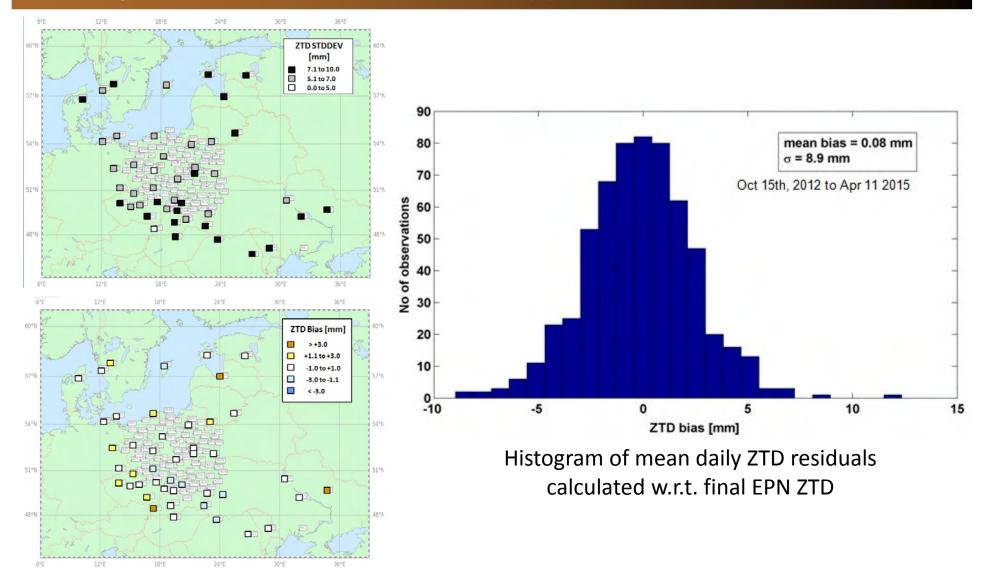
Introduction Near-real time ZTD service

Processing strategy Quality of results

Development of real-time ZTD service

Quality assessment of "WUEL" NRT service (1)

Comparison of ZTD estimates with CODE Rapid ZTDs on common IGS stations for the last three weeks of September 2015


Introduction

Near-real time ZTD service

Development of real-time ZTD service

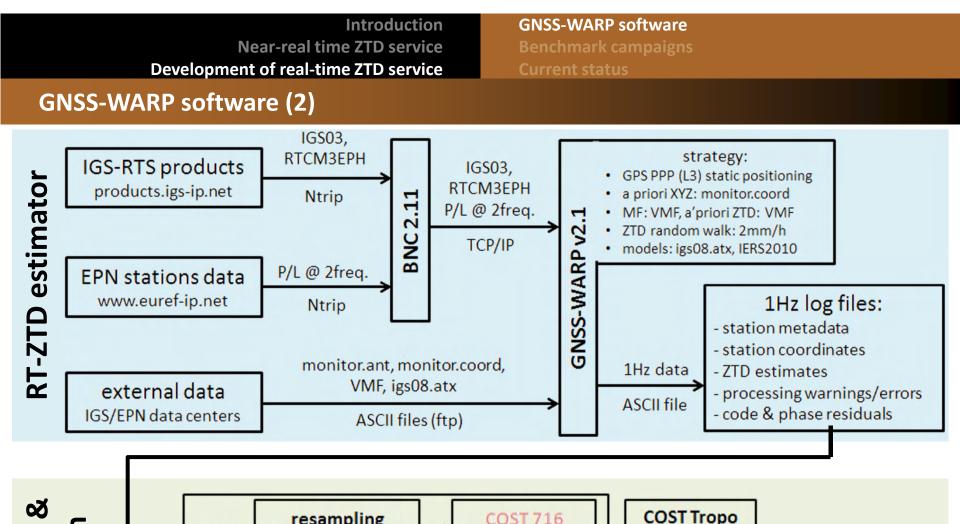
Processing strategy Quality of results

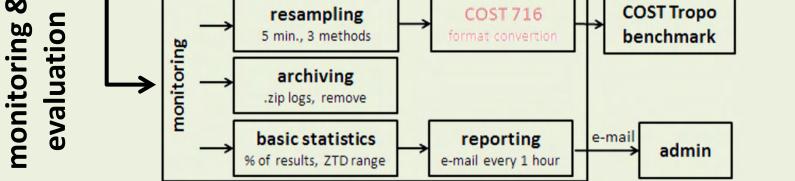
Quality assessment of "WUEL" NRT service (2)

GNSS-WARP software (1)

GNSS-WARP

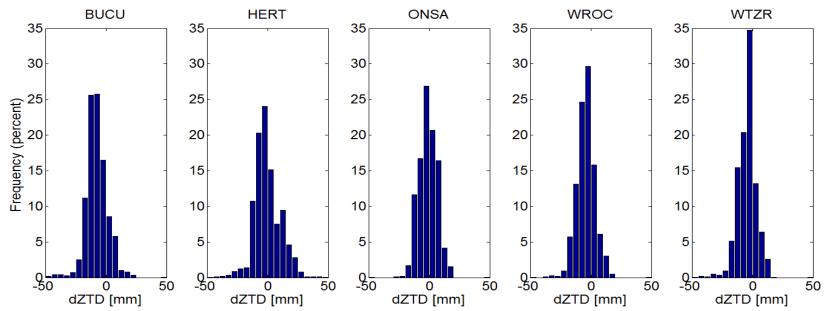
Wroclaw Algorithms for Real-time Positioning


- original, self-developed, state-of-the-art PPP software
- purpose: RT-PPP & PPP-RTK algorithms development
- implemented in Matlab (2015a) + Instrument Control Toolbox
- BNC used as RTCM decoder of IGS RTS streams

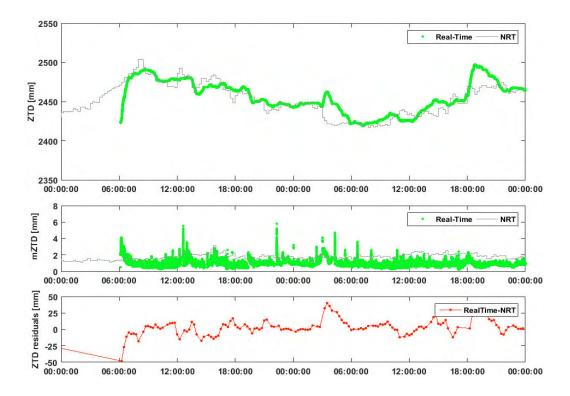

RT-ZTD optimization (GNSS-WARP v2.1m):

- redeveloped and optimized for multi-station, continuous processing
- performance: >10stations / 1 second @1CPU (currently: 147 stations every 60 seconds)

Strategy:

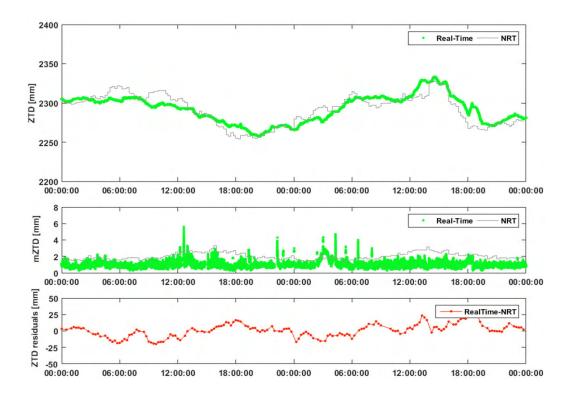

• GPS PPP, static positioning, VMF, IGS03, IERS 2010 models

Benchmark 1 – simulated real time


- RTS IGS03 stored (BNC) in SP3 and CLK files, RINEX files for 10 stations, one week
- station by station **postprocessing** (0.1Hz) with GNSS-WARP v2
- comparison with **final-ZTD** estimates from EPN (**1 hour sampling**)
- purpose: optimize methodology, evaluate possible quality

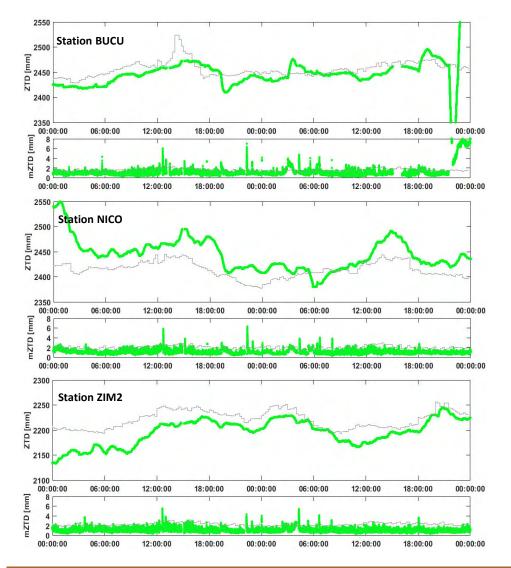
An optimal solutions among all stations were obtained for 2mm/h to 5mm/hour random walk. The results were slightly biased: -4 mm to +7 mm (note: DD vs PPP solution) and the standard deviations varies from 7 mm to 12 mm.

Benchmark 2 – real-time demonstrator (1)


- RTS IGS03 stream and 10 observation streams decoded with BNC, one week
- multi-station real-time processing with GNSS-WARP v2.1M
- comparison with NRT from MetOffice (ROBH, 15min sampling)
- purpose: optimize methodology, detect bugs & errors

Station **WROC** 13-14.06.2015 availability: 86% mean formal error: 1.1mm mean bias: +1.5mm StdDev of residuals: 15.7mm

Benchmark 2 – real-time demonstrator (1)


- RTS IGS03 stream and 10 observation streams decoded with BNC, one week
- multi-station real-time processing with GNSS-WARP v2.1M
- comparison with NRT from MetOffice (ROBH, 15min sampling)
- purpose: optimize methodology, detect bugs & errors

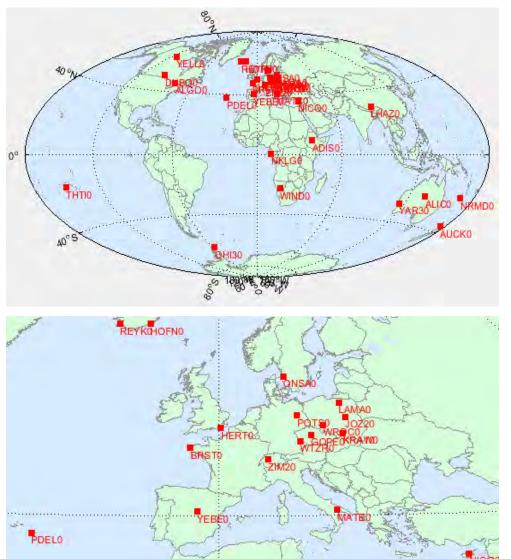
Station **WTZR** 13-14.06.2015 availability: 97% mean formal error: 1.1mm mean bias: -1.0mm StdDev of residuals: 15.5mm

GNSS-WARP software Benchmark campaigns Current status

Benchmark 2 – real-time demonstrator (2)

Bugs & errors

1) Real-time service problems:


- IGS03/RTCMEPH stream failure (e.g. mismatching IOD's)
- stream recovery failure in BNC (solved: use Ntrip 1, not Ntrip 2)
- long gaps in streams availability (reinitialization of the solution)

2) Processing errors:

- some rapid ZTD changes not present in RT estimation
- unexpected ZTD peaks in RT
- systematic biases between RT and NRT (DD vs. PPP)

GNSS-WARP software Benchmark campaigns Current status

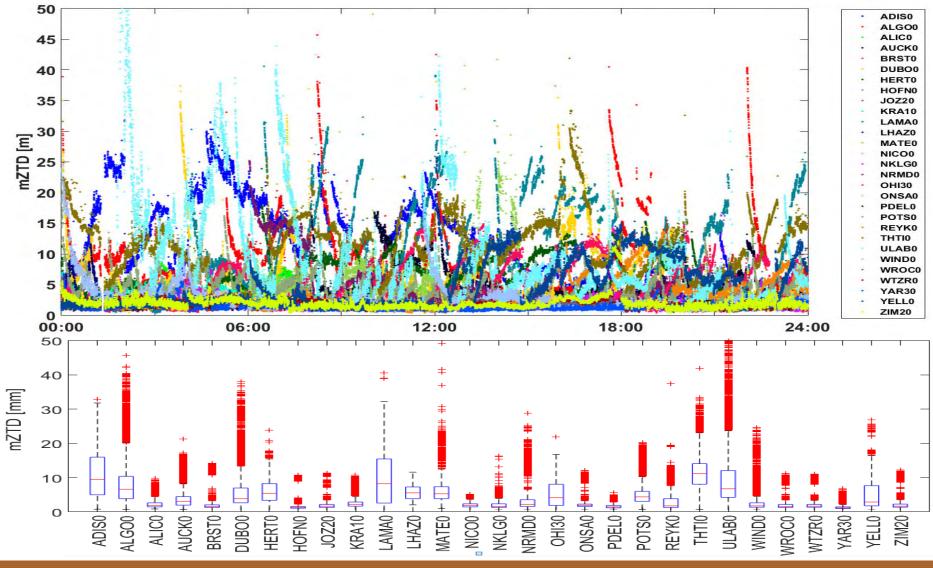
Towards COST Tropo benchmark (1) – general performance

Real-time ZTD:

33 stations @ 5 sec. sampling:

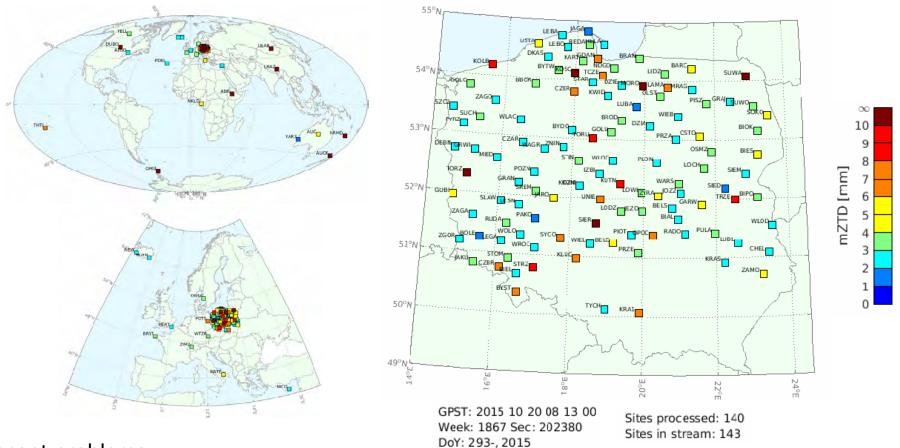
- COST RT TROPO benchmark stations (some have problems!)
- Polish EPN stations

Week 1863 performance:


- 68% mZTD is below 0.0036 m
- 95% mZTD is below 0.0148 m
- 99% mZTD is below 0.0241 m
- data availability: 88.6%

Introduction Near-real time ZTD service

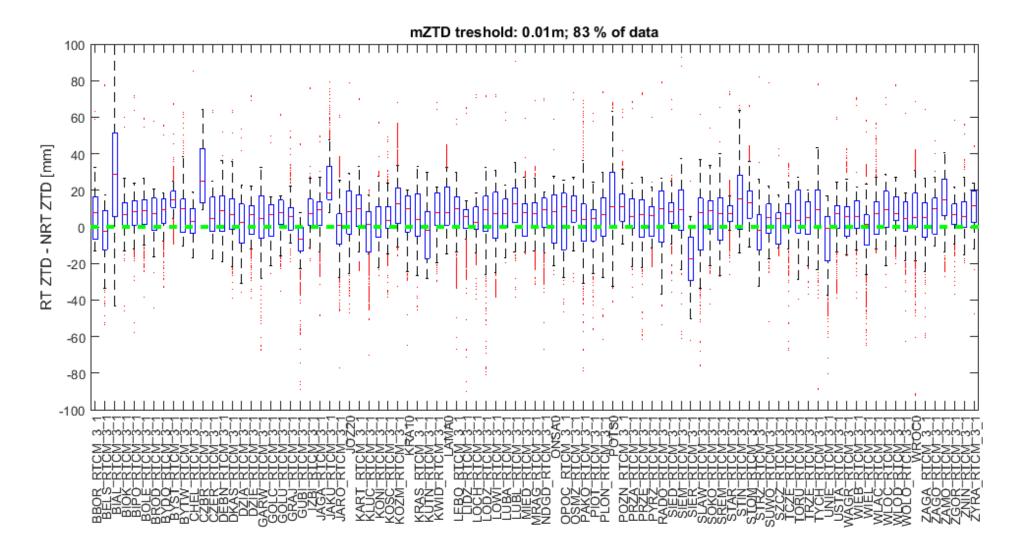
Development of real-time ZTD service


GNSS-WARP software Benchmark campaigns Current status

Towards COST Tropo benchmark (2) – ZTD formal errors at stations

GNSS-WARP software Benchmark campaigns Current status

Towards RT-ZTD monitoring service in Poland (1) – GNSS network



Recent problems:

- bad / missing antenna type (monitor.ant) station is incorrect / not processed
- BNC 2.11 failure / errors no data until restarted
- no access to ASG-EPOS streams (all stations) and SmartNet streams (south east)

GNSS-WARP software Benchmark campaigns Current status

Towards RT-ZTD monitoring service in Poland (2) – comparison with NRT ZTD

27-29 October 2015, Braunschweig, Germany

21/23

Introduction Near-real time ZTD service

Development of real-time ZTD service

GNSS-WARP software Benchmark campaigns Current status

Towards RT-ZTD monitoring service in Poland (2) – comparison with NRT ZTD

Summary

NRT ZTD service (fully operational)

• XXX EPN + XXX ASG-EUPOS + XXX Leica SmartNet

Hourly ZTD	Treshold	Target	Optimal
Accuracy	15 mm	10 mm	5 mm
Timeliness	2 h	1.5 h	1 h
Spatial coverage	Europe	Europe + N. America	Global
Horizontal Sampling	200 km	100 km	30 km

RT ZTD service (under development, improvements required)

• 14 IGS + 19 EPN + 110 Leica SmartNet

Sub-hourly ZTD	Treshold	Target	Optimal
Accuracy	15 mm	10 mm	5 mm
Timeliness	1 h	30 min	15 min
Spatial coverage	Europe	Europe to National	Regional to National
Horizontal Sampling	100 km	50 km	20 km

Thank You!

tomasz.hadas@up.wroc.pl

Institute of Geodesy and Geoinformatics Wroclaw University of Environmental and Life Sciences

5th International Colloquium Scientific and Fundamental Aspects of the Galileo Programme Session 3A: E3 Atmospheric Research