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Motivation

Global and regional ionospheric models are provided
and some of them will be available (e.g. SWACI) even in real-time.
Nevertheless
monitoring of local (small scale) state of the ionosphere
for accurate and reliable GNSS positioning might be required to
reduce degradation of the PVT solutions
which can be caused by ionospheric irregularities.

For example: Estimation of parameters expressing local ionospheric irreg-
ularities (perturbations), on-the-site, might help to reduce degradation of
the PVT solutions.

*) SWACI model (DLR) will provide TEC maps with 10 min delay and 2.5◦x 5.0◦resolution
in space.

Development of an approach for reliable GNSS positioning under presence of local ionospheric disturbances 2/30



Technical University of Berlin
Motivation

Problem Statment

Low spatial and temporal resolution of
available ionospheric products
Lack of information about the local iono-
spheric irregularities

Impact on GNSS observables

The ionospheric disturbances cause sig-
nificant degradation in the accuracy and
reliability of GNSS observables
Their impact on GNSS observations can
cause: higher noise level of GNSS sig-
nal, cycle slips, outlier observations
(blunders) and loss of signal lock
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Outline of the Presentation

Single station monitoring of the local state of the ionosphere

The following parameters are estimated :
Slant Total Electron Content (sTEC),
Rate of TEC (ROT), and Rate of TEC index (ROTI),
Amplitude scintillation indices (S4);
Carrier phase scintillation indices (σφ)

Aplicability of ionospheric parameters

To reduce impact of ionospheric effect on GNSS observable
To define the stochastic model of GNSS observations
Receiver Autonomous Integrity Monitoring for detection and
isolation of a faulty observable
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IONO-Tools output

Flow diagram of the TUB-software for estimation ionospheric parameters

C, C++, PYTHON

Raw data T-BinEx archive

IONO-TOOLSprocessor

T-BinEx archive

ROT S4 sTEC��
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Processor for on-site estimation of the sTEC

The processor estimates slants TEC from code- and carrier phase
observations using the so called "LEVELLING APPROACH"
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Levelling of carrier-phase by code-phase

The following basic equation for calibration of DCB has been implemented:

sTEC = B′
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Estimation or the receiver DCB

Only observations around local midnight and elevations above 40◦

have been processed: WTZR March 1, 2015

BR,f1−f2 = 15.420± 0.217 BR,f1−f2 = 15.880± 0.549
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Estimation or the receiver DCB

Table : DCB estimation for Wettzell receiver (WTZR - IGS), March 1, 2015

SV DCBR,f1−f2 [ns] RMS [ns] Local time Duration

4 15.421 ±0.217 02 : 51−06 : 31 03h40m
11 16.137 ±0.213 03 : 23−06 : 30 03h08m
18 14.854 ±0.288 00 : 13−00 : 51 00h38m
19 15.880 ±0.549 01 : 32−04 : 49 03h17m

DCBWTZR = 15.573± 0.488 [ns] : estimated
DCBWTZR = 15.297± 0.043 [ns] : from IONEX

The estimated DCB is close to the reference one (taken from IONEX).
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On-site estimation of the sTEC values

Kiruna, Day 198/2012; SV05
Kp index > 4

STEC for SV PRN5 derived from: CODE (green), SWACI (red) and
calculated with the „TUB-NavSolutions“ module (blue)
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Rate of Change of TEC

The ROT is calculated as the between epochs difference of TEC [Wanninger,1993]

ROT =
sTEC(ti+1)− sTEC(t1)

ti+1 − ti
(1)

Calculated from carrier-phase observables

Carrier-phase cycle slips are controled

Hardware biases and the carrier-phase ambiguities are canceled
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Signal scintillations

Ionospheric irregularities diffract radio waves to cause amplitude and phase scin-
tillation of satellites radio signals
(GPS) signal scintillations are rapid variations in signal’s amplitude or phase
Occur (mainly) at high latitudes (polar cap) and in magnetic equator region

The phase scintillation index σφ is characterised by standard deviation of the
detrended phase δφ:

σφ =
√
E{δφ2} − (E{δφ})2

δφ : detrended carrier phase measurements

The amplitude scintillation index §4 is characterised by standard deviation of
the received signal power normalized by its mean as:

S4,total =

√
E{SI2} − (E{SI})2

(E{SI})2

SI : signal intensity calculated from in-phase (I) and quadra-phase (Q)
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Amplitude scintillation

The signal power values can be estimated by computing
the difference between NBP and WBP the over each bit period N

WBP =

N∑
i=1

I2i +Q2
i : Wide Band Power (WBP)

NBP =

(
N∑
i=1

I2i

)2

+

(
N∑
i=1

Q2
i

)2

: Narrow Band Power (NBP)

SI ≈ NBP −WBP : Signal Intensity, signal power

Finally, by removing ambient noise the final amplitude scintillation index
can be computed as [Dierendonck et al. 1993]:
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√
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]

ambient noise
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Amplitude scintillation

Figure : Amplitude scintillation indices obtained from all visible satellites on
16 July 2012, Kiruna/Sweden
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Carrier-phase scintillation

Digital High-Pass Filter Implementation

A sixth-order Butterworth filter with a 0.1 Hz cutoff frequency
The filter has a form in the s-plane as: [Dierendonck et al. 1993]

Yi(s) =
s2

s2 + aiωNs+ ωsN
where : fN =

ωn

2π

6th order Butterworth filters as three cascade 2nd-order filters

50Hz
carrier-
phase φ

2nd − order 2nd − order 2nd − order

50Hz
detrended

carrier-
phase δφ
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Phase Scintillation
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Figure : Phase scintillation indices obtained from all visible satellites on 17
March 2015, Kiruna/Sweden (St. Patrick’s day, geomagnetic storm)
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IONO-Tools output

Flow diagram of the TUB-software for estimation ionospheric parameters

C, C++, PYTHON

Raw data T-BinEx archive

IONO-TOOLSprocessor

T-BinEx archive

ROT S4 sTEC��
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Use of RAIM for Mitigation

In order to monitor reliability of PVT solutions
a Receiver Autonomous Integrity Monitoring (RAIM) algorithm
is used here

Reliability thresholds are specified by setting values of the two pa-
rameters:

α - Probability of false alarm
β - Probablitilty of missed detection (risk level)

Those values must be selected very carefully because:
Setting too large value of α can cause exclusion of a higher
number of correct observations.
Setting too large value of β can cause acception of errornous
observations as correct ones.
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RAIM algorithm

Input data

WLS Ad-
justment

GLOBAL
TEST

Reliable
solution

Exclude

LOCAL
TEST

Unreliable
solution

H0 :

Ha :

Ha,k :

H0,i :

DETECTION:⇒ global test

Null hypothesis: no integrity failure
H0 : v̂TQ−1v̂ ≤ χ2

1−α,n−p
Alternative hypothesis: integrity failure
Ha : v̂TQ−1v̂ > χ2

1−α,n−p

IDENTIFICATION:⇒ local test

Null hypothesis: no blunder detect
H0,i : |Zk| ≤ n1−α0

2

Alternative hypothesis: blunder detect
Ha,i : |Zk| > n1−α0

2

EXCLUSION:
k − th observable is an blunder
Ha,k : Zk ≤ Zi∀i, ∧ Zk > n1−α0

2

[Walter and Enge1995]
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Selected Stochastic Models

Traditional stochastic models

Elevation dependent model [Rothacher et al., 1998]:

w(el) = sin2(el)

C/N0 dependent model (SIGMA− ε) [Hartinger and Brunner, 1999]:

w(C/N0) = 1/(Ciexp
−(

C/N0
10

))

w(·) : weight of undifferenced observation
C/N0 : phase scintillation index
el : satellite elevation angle
Ci : empirical constant
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Investigated Stochastic Models

The uncorrelated behaviour of the scintillation and satellite elevation angle implies
the unrealistic assumption made by elevation-dependent weighting models
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Figure : Phase scintillation and satellite elevation angle measured at station
Kiruna/Sweden (March 17th, 2015) for satellite PRN 15
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Investigated Stochastic Models

Proposed stochastic models

Scintillation dependent model:

w(Sidx) = 1 + a exp−Sidx

Scintillation & Elevation dependent model:

w(Sidx, el) = 1 + sin2(el) · exp−Sidx

w(·) : weight of undifferenced observation
Sidx : phase scintillation index
el : satellite elevation angle
a : empirical constant
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Investigated Stochastic Models - Weights
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Figure : Performance of the applied weight values for satellite PRN 15
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Experimental Setup

Parameters Setup
Observables

Receiver site location Kiruna/Sweden: 67.84◦N, 20.41◦E
Time of observation March 17, 2015 (DOY 076)
Type of observables: positioning GPS C/A code-phase (1Hz)
Type of observables: scintillation GPS L1 carrier-phase (50Hz)
Cut-off angle 5 ◦

Positioning model
Observational model Undifferenced (SPP)
Stochastic model Variances along the diagonal

A priori models
Tropospheric model Saastamonien
Ionospheric model Klobuchar

RAIM settings
Probability of false alarm 5%
Probablitilty of missed detection 20%
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Numerical Results
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Numerical Results - without RAIM

Figure : The residuals of the SPP solution
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Numerical Results - with RAIM

Figure : The residuals of the SPP solution and activated RAIM
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Numerical Results

Number of unreliable solutions and rejected observations
(WLS+RAIM)

Stochastic model # of unreliable # of rejected
solutions observations

Elevation Angle 220 (0.44%) 2378
C/N0 856 (1.70%) 1821
Scintillation 129 (0.26%) 979
Scintillation & Elev. Angle 188 (0.37%) 1821
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Summary and Future Activities

CONCLUSION

Usage of the scintillation-based stochastic model in the RAIM
can enhance reliability of GPS based positoning under pres-
ence of ionospheric local disturbances.

FUTURE ACTIVITIES

Further analysis will be addressed on carrier-phase
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Numerical Results
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Figure : HPE for the WLSR-RAIM technique with w(C/N0) (above) and w(Sidx) (below)
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Numerical Results
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Figure : VPE for the WLSR-RAIM technique with w(C/N0) (above) and w(Sidx) (below)
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Receiver DCB taken from the CODE
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Levelling of carrier-phase by code-phase
Flow diagram of the TUB-software for

estimation of: sTEC, and receiver DCB
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