Stochastic assessment of GPS measurements for
instantaneous carrier phase positioning

MOTIVATION

For optimal estimation of the unknown parameters in the positioning model both functional and stochastic models need to be carefully defined. Whilst the
GNSS functional model was the subject of detailed research conducted over the past twenty years and it is well documented for different types of positioning
applications, the issue of proper definition of stochastic model have been undertaken in recent few years and is still an open research problem. It is a common
approach to assuming a constant accuracy of GNSS measurements and neglecting cross and time correlation between them. This is reflected in the design of
variance-covariance matrix which is usually diagonal matrix with a priori defined entries. Especially with respect to instantaneous applications which are
characterized by weakening model strength, unrealistic or simplified definition of stochastic properties of observations causes that the performance of
ambiguity resolution and position estimation can be limited.
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In this study we investigate the methods of stochastic assessment of GNSS observations and its impact to derive precise positioning model. Especially the d.prochniewicz@gik.pw.edu.pl
stochastic modelling procedure based on observations from GNSS signal generator has been developed to determine individual components of the variance-

covariance matrix. The results of ambiguity resolution as well as the positioning accuracy shows that the utilizing the individual empirical stochastic model of

observations increase the reliability of instantaneous performance.

EXPERIMENT DESIGNE

n METHODOLOGY

Stochastic properties of observations were determined for GPS receiver Leica GX1230GG (S. No. 468950) GPS receiver testing procedure consists of two tests:

based on: 1. Signal generator test - the same 24-hours observations were generated two times; based on that

GPS Signal generator observations: Spirent GNSS Generator double-differenced code and carrier-phase residuals for zero-baseline were calculated; the residuals were

Zero-baseline observations: WUT1 stations located on the roof of Warsaw University of Technology Main used to determine constant part of measurement noise and cross-correlations of GPS observations;
Building; reference receiver - Leica GX1230GG (S. No. 466566) 2. Zero-baseline test - the same type of GPS receivers were connected to the one antenna; based on that

The data used: the 24-hours of double-differenced code and carrier-phase residuals for zero-baseline were calculated;

Observations: GPS - L1 /L2 / C1/ P2 the residuals were used to determine elevation-dependent part of measurement noise;

. . h . .
Time: 1.01.2016 / 24" / sample rates: 30 sec. (2880 epoch) / cut-off angle: 1 deg. Code (P) and carrier-phase (L) pseudorange model:

Compare models: P=|RI+ol+oT+om+op,,+c(ot,.~ot,, e,
#1 Standard model: 5,,, = 0.003 m; o©,,=0.30m; cov,, =0 L=IRl=0l+0T+om+op +c(ot, ot )+iAN+e,
#2 Standard elevation model: 6, - a=0.003 m b=0.003 m; o,,,=100-6,,,; cov,, =0
#3 Combined elevation model: 6,/ 6, — a,b - individual determined models; cov,, =0 Double-differenced code and carrier-phase observation residuals for a zero-baseline:
#4 Combined elevation + cross-correlation model: 6./ 6./ — a,b - individual determined models;
cov,,,, - individual determined models VAP—IVARI=VAeg, VAL—IVARI-=AN=VAg,
Positioning model: Variance and covariance of code and carrier-phase noise have been determined according to formulas:
Observations: zero-baseline
Functional model: Geometry-Based Double-Differenced Var (X )= EWX )—[EX)]’ Cov (X, Y)=EX Y )—E(X)E(Y) Var (P)= Var (VAP)/4
Stochastic model: lonosphere-Fixed Troposphere Fixed
Ambiguity resolution: Instantaneous (one-epoch resolution) Observation noise model - elevation dependency:

ILS estimation method: MLAMBDA
ILS validation test: R-ratio

Var (X )= (a + b/sin el)’
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n STOCHASTIC MODEL & POSITIONING PERFORMANCE A CONCLUSIONS

Stochastic model: Positioning performance: , , o
® The stochastic modelling of individual components of
Individual combined model = the variance-covariance matrix of observation noise
elevation dependency + constant part allows for increased reliability of solution in both the
o 001 , | , | S - 001 , | , | , | | ambiguity resolution and solution accuracy aspects;
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