

GNSS tomography and the impact of refractivity data assimilation on precipitation forecast

<u>Gregor Möller¹</u>, Christoph Wittmann², Xin Yan², Robert Weber¹

¹ TU Wien, Austria

² Zentralanstalt für Meteorologie und Geodynamik, Austria

IAG Commission 4 Symposium, 06 September 2016, SC 4.3 Session 4

Atmosphere as complex thermo-hydrodynamical system

- A "growth in understanding strongly depends on the improvement of the measurements and observing systems" (Peixoto and Oort, 1991)
- Future evolution of atmospheric science leans on densified classical and new, more complex observation technologies (Bauer et al., 2015)

GNSS as atmospheric observing technique (occultation, meteorology, ...)

- High accuracy and sensitivity to atmospheric constituents
- Since early 1990s GNSS mircowave signals are utilised to derive information about water vapour in the atmosphere (see Bevis et al., 1992)
- Station density, number of satellites and signals increases continously
 -> new processing strategies to exploit the full potential of future GNSS

- 1. Principles of GNSS tomography
- 2. Tomography impact studies
- 3. Results using GNSS derived slant wet delays
- 4. Assimilation test cases during 2013 Europe floods
- 5. Conclusion/Challenges

1 Principles of GNSS Tomography

Goal: Vertical structure of humidity (and temperature)

Wet refractivity on a three-

dimensional grid

$$N_w = k_2 \frac{e}{T} + k_3 \frac{e}{T^2}$$

Smith and Weintraub, 1953

- Atmosphere (< 11 km) is divided into volume elements (voxels)
- Voxel size : 20km x 20km, 11 vertical layers (350m, 750m, ... 9750m)

Least squares adjustment: $N_{w} = (A^{T} \cdot P \cdot A)^{+} \cdot A^{T} \cdot P \cdot SWD$

- N_{w} ... wet refractivity field [ppm] SWD ... slant wet delays [mm] *P* ... observation weights
 - A ... design matrix with ray paths [km]

Pseudo inverse using singular value decomposition

- $(A^T \cdot P \cdot A)^+ = V / S \cdot U$ S ... diagonal matrix of eigenvectors (EV)
- Zero EV correspond to voxels not crossed by any ray path
- Other reconstrution methods: Algebraic reconstruction technique (ART), Kalman-Filter

Synthetic (ray-traced) slant wet delays (SWD)

- Vienna ray-tracer is adapted to voxel model
- Input: AROME model parameters (p, Q, T-> N)

AROME	Value
Resolution	2.5km (600x432), 60 levels
Epoch	25 May 2013, 00 UTC

- Output: SWDs for 25 stations (see figure) incl. ray paths und bending
- Settings: Elev = 1, 2, 3, 5:5:85°, Azi = 0:10:350°
- #Observations: 25stations x 20Elev x 36Azi = 18000

Results (synthetic observations)

Parameter	Value
Number of observations	18000
Zero elements in A	96.2 %
Condition number	32
Rank (EV > 0.01 km ²)	275
Bias/Stddev of dN _{wet}	-0.12/0.57 ppm

Voxels: 25x11 = 275

- N_{wet} estimated <u>without</u> any a priori information or constraints
- Bias and stddev computed from N_{wet} differences (AROME minus Tomo)

Side observations (which enter voxel model through a lateral surface)

Page 8 /16

2 Tomography impact studies

Station density (6/25 stations)

Parameter	Value (6 sites)	Value (all)
Number of observations	4320	18000
Condition number	187	32
Rank (EV > 0.01 km ²)	267	275
Bias/Stddev of dN _{wet}	0.86/6.52 ppm	-0.12/0.57 ppm

No solution for certain voxels at lower layers

Solution with observed (GNSS derived) SWDs – 25 May 2013

Inversion	LSQ	Used SWD	All > 3°, no side observations
A priori	AROME	Weighting	Elevation and height-dependent
Other	6 GNSS stations, +/- 5 min observation window		

Comparison with radiometer data - 25 May 2013 (Uni Innsbruck)

Evaluation of estimated refractivity fields (East Austria)

• vertical integration $ZWD_v = 10^{-6} \int N_{wet} \cdot ds$

 \bullet comparison of $\text{ZWD}_{\rm v}$ with ZWD estimated at GNSS site

4 Assimilation test cases

Heavy precipitation events

- Period: 21.05. 03.06. 2013
- Large area was affected, local extremes of up to 300 mm precipitation in 72 h

Assimilation of GNSS derived refractivity fields

- Convert N_{wet} into specific humidity and temperature (1DVAR)
- Assimilation in AROME (3DVAR) like radiosonde profiles

experiment name	description	a-priori for refractivity
ZG01	reference run	none
ZG02	refractivity assimilation	ALARO
ZG03	ZTD assimilation	none
ZG04	refractivity assimilation	AROME
ZG05	ZTD assim. (no bias corr.)	AROME

Impact on precipitation forecast

A = 0: perfect forecast (wrt. analysis)A > 0: overestimation (wrt. analysis)

AROME tends to overestimate precipitation during the test period

Amplitude Score [A] for domain 00 (OESTERREICH_GESAMT) at 02 km resolution

Refractivity data (ZG02 and ZG04) help to reduce the forecast error (< 15 h) Larger impact than ZTD data (ZG03 and ZG05), particular in the alpine region

- GNSS tomography can provide good results but is very sensitive to input data
 - especially to missing observations at low elevation angles
 - very much affected by the a priori model
- Assimilated refractivities have a strong impact on AROME forecast over complex orography, deteriorate over flat terrain.

Challenges

- Modelling of side observations
- Improved weighting (remove dependency on a priori model)
- Combination with other observations (MultiGNSS) and observation types

[Peixoto and Oort, 1991] J. P. Peixoto and A. H. Oort, Physics of Climate, American Institute of Physics, New York, 520 pp., 1991

[Bauer et al., 2015] P. Bauer, A. Thorpe, G. Brunet, The quiet revolution of numerical weather prediction, Nature, Vol. 525, No. 7567. (2 September 2015), pp. 47-55, doi:10.1038/nature14956

[Bevis et al. ,1992] M. Bevis, S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, R. H. Ware, GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System, Journal of Geophysical Research 97: doi: 10.1029/92JD01517, 1992

[Smith and Weintraub, 1953] E. K. Smith, S. Weintraub, The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies. Proceedings of the Institute of Radio Engineers (I.R.E.), 41: 1035-1037, 1953

This work has been carried out in the framework of the **project GNSS-ATom**, funded by the Austrian research promotion agency (FFG) within the austrian space applications programme (**ASAP 9th call**), FFG project number: 940098.

Appendix

AROME - assimilated observations

Observation type	assimilated fields	data source
SYNOP+TAWES	T2m,RH2m,U10m,V10m,f	ZAMG+OPLACE
AMDAR (airplanes)	U,V,T	ZAMG+OPLACE
GEOWIND (SAT-Winde) MSG3	U,V	OPLACE
TEMP (radiosondes)	U,V,T,Q,f	ZAMG+OPLACE
PILOT	U, ¥	ZAMG
WINDPROFILER*)	U, ¥	ECMWF MARSARCHIV/OPLACE
MSG3-SEVIRI	WV-radiances	OPLACE
NOAA16/18/19+MetOp-A-B AMSU-A,-B,MHS,HIRS	radiances	OPLACE
MetOp-A-B IASI	radiances	OPLACE
ASCAT wind	U10m,V10m (25km)	ZAMG/EUMETSAT
GNSS ZTD	zenith total delay (ZTD)	TU-Wien
GNSS 3D refractivity	humidity/temperature profiles	TU-Wien
RADAR*)	reflectivity / radial winds	Austrocontrol/Remote Sensing
MODIS-Schneebedeckung*)	snow yes / no	ENVEO-CRYOLAND

Results (all observations; outliers removed)

Observations with large residuals (> 30rms) were removed

Parameter	Value (all)	Value (3sig)
Number of observations	18000	17160
Zero elements in A	96.2 %	96.2 %
Condition number	32	30
Rank (EV > 0.01 km ²)	275	275
Mean formal error	0.03 ppm	0.03 ppm
Mean error/Stddev of dN _{wet}	-0.12/0.57 ppm	-0.09/0.48 ppm

No effect on mean formal error but better fit of estimated N_{wet} (smaller bias and standard deviation wrt. AROME data)