

#### IAG Commission 4 Symposium

September 4-7, 2016 Wrocław, Poland



# Can VMF1 be improved by the use of new ray-tracing data?

Daniel Landskron, Armin Hofmeister, Johannes Böhm Technische Universität Wien, Austria

## **Troposphere Delay Modeling**

$$\Delta L(e) = \Delta L_h^z \cdot mf_h(e) + \Delta L_w^z \cdot mf_w(e)$$

- $\Delta L_h^z$ : zenith hydrostatic delay from surface measurements, NWM or empirical models (GPT2w)
- ΔL<sub>w</sub><sup>z</sup>: zenith wet delay from NWM or empirical models (GPT2w)
- *mf<sub>h</sub>*: hydrostatic mapping function from discrete (VMF1) or empirical models (GMF, GPT2w,..)
- *mf<sub>w</sub>*: wet mapping function
   from discrete (VMF1) or empirical models (GMF, GPT2w,..)

#### $\Rightarrow \quad \text{Vienna Mapping Function 1 (VMF1)!}$

But: already 10 years old...



## VMF1 (Böhm et al., 2006)



- *b*, *c*: empirical coefficients
  - determined from 3 years of data
  - *c<sub>h</sub>*: annual and latitude dependence (from a 10°x10° grid)
  - $-b_h, b_w$  and  $c_w$ : constants
- *a*: determined discretely from ray-tracing, strictly for el = 3.3° by inversion of above formula

#### But: Small deficiencies in empirical constants and in tuning for 3.3°!



## VMF1 vs. VMF3

| VMF1                                      | VMF1_repro                                             | VMF3                                                                                                 |
|-------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| <u>b</u> , с                              | b, c                                                   | b, c                                                                                                 |
| from 3 years of data on a 10°x10° grid    | from 3 years of data on a<br>10°x10° grid              | from 10 years of data on<br>a 2.5°x2.0° grid                                                         |
| lat. dep. for <mark>c<sub>h</sub></mark>  | lat. dep. for c <sub>h</sub>                           | lat. and lon. dep. for $b_h$ ,<br>$b_w$ , $c_h$ and $c_w$ through<br>spherical harmonics<br>(n=m=12) |
| annual variation for <b>c<sub>h</sub></b> | annual variation for $c_h$                             | annual and semi-annual terms for $b_h$ , $b_w$ , $c_h$ and $c_w$                                     |
| a                                         | a                                                      | a                                                                                                    |
| strictly for el = 3.3°                    | strictly for el = 3.3°                                 | LSM for el = [3°, 5°, 7°,<br>10°, 15°, 30°, 70°]                                                     |
| simple 1D ray-tracer                      | 2D ray-tracer "RADIATE"<br>( <i>Hofmeister</i> , 2016) | 2D ray-tracer "RADIATE"<br>(Hofmeister, 2016)                                                        |



## VMF1 vs. VMF3

| VMF1                                      | VMF1_repro                                             | VMF3                                                                                                 |
|-------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| <b>b</b> , c                              | <b>b</b> , с                                           | b, c                                                                                                 |
| from 3 years of data on a 10°x10° grid    | from 3 years of data on a 10°x10° grid                 | from 10 years of data on<br>a 2.5°x2.0° grid                                                         |
| lat. dep. for <mark>c<sub>h</sub></mark>  | lat. dep. for <mark>c<sub>h</sub></mark>               | lat. and lon. dep. for $b_h$ ,<br>$b_w$ , $c_h$ and $c_w$ through<br>spherical harmonics<br>(n=m=12) |
| annual variation for <b>c<sub>h</sub></b> | annual variation for <b>c<sub>h</sub></b>              | annual and semi-annual terms for $b_h$ , $b_w$ , $c_h$ and $c_w$                                     |
| a                                         | a                                                      | a                                                                                                    |
| strictly for $el = 3.3^{\circ}$           | strictly for $el = 3.3^{\circ}$                        | LSM for el = [3°, 5°, 7°,<br>10°, 15°, 30°, 70°]                                                     |
| simple 1D ray-tracer                      | 2D ray-tracer "RADIATE"<br>( <i>Hofmeister</i> , 2016) | 2D ray-tracer "RADIATE"<br>( <i>Hofmeister</i> , 2016)                                               |



## VMF1 vs. VMF3

| VMF1                                      | VMF1_repro                                             | VMF3                                                                                                                                     |
|-------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| <b>b</b> , c                              | <b>b</b> , c                                           | <b>b</b> , c                                                                                                                             |
| from 3 years of data on a 10°x10° grid    | from 3 years of data on a 10°x10° grid                 | from 10 years of data on<br>a 2.5°x2.0° grid                                                                                             |
| lat. dep. for <mark>c<sub>h</sub></mark>  | lat. dep. for <mark>c<sub>h</sub></mark>               | lat. and lon. dep. for b <sub>h</sub> ,<br>b <sub>w</sub> , c <sub>h</sub> and c <sub>w</sub> through<br>spherical harmonics<br>(n=m=12) |
| annual variation for <b>c<sub>h</sub></b> | annual variation for c <sub>h</sub>                    | annual and semi-annual terms for $b_h$ , $b_w$ , $c_h$ and $c_w$                                                                         |
| a                                         | a                                                      | a                                                                                                                                        |
| strictly for $el = 3.3^{\circ}$           | strictly for $el = 3.3^{\circ}$                        | LSM for el = [3°, 5°, 7°,<br>10°, 15°, 30°, 70°]                                                                                         |
| simple 1D ray-tracer                      | 2D ray-tracer "RADIATE"<br>( <i>Hofmeister</i> , 2016) | 2D ray-tracer "RADIATE"<br>( <i>Hofmeister</i> , 2016)                                                                                   |



## Input for user

- $a_h, a_w, \Delta L_h^z, \Delta L_w^z$ : VMF3 text files (6-hourly)
- zd: zenith distance ( $\pi/2$  elevation)
- mjd: Modified Julian Date
- **\phi**: Latitude [rad]
- **λ**: Longitude [rad]



#### Comparisons to assess performance of VMF3 vs. VMF1\_repro and VMF1:

- 1. Delay differences to ray-tracing for specific sites
- 2. Delay differences to ray-tracing on a grid
- 3. VLBI analysis  $\rightarrow$  baseline length repeatability (BLR)



# Mean absolute differences in slant total delay to ray-tracing [mm]

33 sites around the world 1999 -2014



| [mm]       | <b>3°</b> | 5°   | <b>7°</b> | 10°  |
|------------|-----------|------|-----------|------|
| VMF1_repro | 0.55      | 3.98 | 2.54      | 1.47 |
| VMF3       | 1.18      | 2.70 | 1.71      | 0.93 |

#### $\Rightarrow$ Improvement over VMF1!



#### Improvement of VMF3 over VMF1\_repro w.r.t. ray-tracing [%] el = 5°





2. Delay differences to ray-tracing on a grid

Bias of differences in slant total delay to ray-tracing [mm]

2592 grid points 120 epochs (2001-2010)

el = 5°

VMF1\_repro







St. dev. of differences in slant total delay to ray-tracing [mm]

2592 grid points 120 epochs (2001-2010)

el = 5°









#### Bias and st. dev. of differences in slant hydrostatic delay to ray-tracing [mm]





#### Bias and st. dev. of differences in slant wet delay to ray-tracing [mm]

VMF1 repro VMF3 90<sup>°</sup>E 180<sup>°</sup>E 90<sup>°</sup>E 180<sup>°</sup>E 90<sup>°</sup> W 0 W 90 W 0 60 5 5 45<sup>°</sup> 45 30<sup>°</sup> N 30° bias [mm] 15<sup>°</sup> N bias [mm] 15<sup>°</sup> 0° 0 0 0 15<sup>°</sup> S 15<sup>°</sup> S 30<sup>°</sup> S 30<sup>°</sup> S -5 -5 45<sup>°</sup> S 45<sup>°</sup> S 60 60 90<sup>°</sup>E 180<sup>°</sup>E 18<u>0°W</u>90°W 180°W 90°W 90<sup>°</sup>E 180<sup>°</sup>E 0 0 3.5 3.5 3 3 45 45 2.5 2 [uu] 1.5 [s 2.5 30<sup>°</sup> 30 sigma [mm] 15<sup>°</sup> N 15 2 ٥° 0 1.5 15<sup>°</sup> S 15<sup>°</sup> S 30<sup>°</sup> S 30<sup>°</sup> S 1 1 45<sup>°</sup> 45 S 0.5 0.5 60 60



0

0

#### Mean absolute difference in slant delay to ray-tracing [mm]

Averaged over all 2592 grid points and 120 epochs from 2001 and 2010 5° elevation

| [mm]            | VMF1_repro | VMF3 |
|-----------------|------------|------|
| ΔL              | 1.86       | 0.83 |
| ΔL <sub>h</sub> | 1.80       | 0.74 |
| ۵L <sub>w</sub> | 0.31       | 0.30 |

#### $\Rightarrow$ Improvement over VMF1!



#### 3. Comparison of BLR

## **Comparison of baseline length repeatabilities (BLR)**

VLBI analysis using VieVS
real VLBI observations
45 VLBI stations
1338 sessions from 2006-2014
No ΔL<sub>w</sub><sup>z</sup> estimated!



| [mm]       | BLR  |
|------------|------|
| VMF1       | 34.9 |
| VMF1_repro | 26.2 |
| VMF3       | 26.1 |

#### $\Rightarrow$ Improvement over VMF1!



## Conclusions

- New ray-traced delays yield a significant improvement
  - Main improvement comes from zenith delays
  - Re-processed VMF1 more exact than VMF1
- VMF3 model more exact than VMF1 model, especially at low elevations
- VMF3 can be applied just like VMF1





- Finalize calculations and provide VMF3 for all
  - IVS stations (VLBI)
  - IGS stations (GNSS)
  - IDS stations (DORIS)
  - on a grid
- Create a new empirical model (GPT3) on the same basis



## Thank you very much!

#### Acknowledgments:

The authors would like to thank the Austrian Science Fund (FWF) for financial support within the project RADIATE VLBI (P25320).

#### References:

**Böhm, J., B. Werl, H. Schuh (2006)**: *"Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data"*. J. Geophys. Res. Vol. 111 B02406 doi:10.1029/2005JB003629

**Hofmeister, A. (2016):** *"Determination of path delays in the atmosphere for geodetic VLBI by means of ray-tracing"*. PhD thesis. Department of Geodesy and Geoinformation, TU Wien. <u>http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444</u>

