

MULTI-GNSS IONOSPHERE MODELING WITH THIN PLATE SPLINES INTERPOLATION

Anna Krypiak-Gregorczyk¹, Paweł Wielgosz¹ Andrzej Borkowski² Angela Aragon-Angel³ Aleksander Nowak⁴

¹University of Warmia and Mazury in Olsztyn, Poland ²Wroclaw University of Environmental and Life Sciences, Poland ³European Commission, Joint Research Centre (JRC), Institute for the Protection and Security of the Citizen, Italy ⁴Gdansk University of Technology, Poland

IAG Commission 4 Positioning and Applications Symposium Wroclaw, Poland

OUTLINE

- **1.** Basics in GNSS-TEC estimation
- 2. Short review of exiting global models
- 3. Regional ionosphere modeling at UWM in Olsztyn, Poland
- 4. Comparison to well established models

FUNDAMENTAL OBSERVATION EQUATIONS

$$L1_{i}^{k} = q_{i}^{k} + c\left(\Delta t_{i} - \Delta t^{k}\right) + \Delta T_{i}^{k} - \Delta I_{i}^{k} - \lambda_{1}N1_{i}^{k} + c\left(b_{L1}^{k} + b_{L1.i}\right) + \varepsilon$$
$$P1_{i}^{k} = q_{i}^{k} + c\left(\Delta t_{i} - \Delta t^{k}\right) + \Delta T_{i}^{k} + \Delta I_{i}^{k} + c\left(b_{1}^{k} + b_{1.i}\right) + \varepsilon$$

where:

$L1_i^k$	– the carrier phase observations on L1 frequency.
$P1_i^k$	– the P-code observations on L1 frequency.
q_i^k	– the geometric distance between receiver <i>i</i> and satellite <i>k</i> .
С	– the speed of light.
Δt_i . Δt^k	- offsets of the receiver (<i>i</i>) and satellite (<i>k</i>) clocks.
ΔT_i^k	– delay of the signal due to the troposphere.
ΔI_i^k	 delay of the signal due to the ionosphere.
$b_{1}^{k} . b_{L1}^{k}$	– the satellite hardware delay.
$b_{1.i}. b_{L1.i}$	– the receiver hardware delay.
$N1_i^k$	– the initial carrier phase ambiguity.
λ_1	– the wavelength.
ε	– indicates a random error.

GEOMETRY-FREE LINEAR COMBINATION (P4)

$$P1_{i}^{k} = q_{i}^{k} + c(\Delta t_{i} - \Delta t^{k}) + \Delta T_{i}^{k} + \Delta I_{i}^{k} + c(b_{1}^{k} + b_{1.i}) + \varepsilon$$

$$P2_{i}^{k} = q_{i}^{k} + c(\Delta t_{i} - \Delta t^{k}) + \Delta T_{i}^{k} + \xi \Delta I_{i}^{k} + c(b_{2}^{k} + b_{2.i}) + \varepsilon$$

$$\xi = \frac{f_{1}^{2}}{f_{2}^{2}} \approx 1.647; \qquad \xi_{4} = 1 - \xi = \approx -0.647;$$

 $P4_{i}^{k} = P1_{i}^{k} - P2_{i}^{k} = +\xi_{4}\Delta I_{i}^{k} + c(DCB_{P1P2}^{k} + DCB_{P1P2i}).$

where: $DCB_{P1P2}^{k} = b_{1}^{k} - b_{2}^{k}$. $DCB_{P1P2i} = b_{1.i} - b_{2.i}$.

$$\Delta I_{i}^{k} = \frac{P4_{i}^{k} - c(DCB_{P1P2}^{k} + DCB_{P1P2i})}{\xi_{4}} \qquad \Delta I_{i}^{k} = -\frac{40.3}{f^{2}} \text{TEC}$$

DISPERSION OF TEC CALCULATED FROM SMOOTHED PSEUDORANGE DATA

✓ Clear **vTEC** dependence on the smoothed arc length

20 MARCH 2012

GEOMETRY-FREE LINEAR COMBINATION (L4) OF CARRIER PHASE DATA

$$L1_{i}^{k} = q_{i}^{k} + c(\Delta t_{i} - \Delta t^{k}) + \Delta T_{i}^{k} - \Delta I_{i}^{k} - \lambda_{1}N1_{i}^{k} + c(b_{L1}^{k} + b_{L1.i}) + \varepsilon$$

$$L2_{i}^{k} = q_{i}^{k} + c(\Delta t_{i} - \Delta t^{k}) + \Delta T_{i}^{k} - \xi \Delta I_{i}^{k} - \lambda_{2}N2_{i}^{k} + c(b_{L2}^{k} + b_{L2.i}) + \varepsilon$$

$$\xi = \frac{f_{1}^{2}}{f_{2}^{2}} \approx 1.647; \qquad \xi_{4} = 1 - \xi.$$

$$\boldsymbol{L4_i^k} = L1_i^k - L2_i^k = -\xi_4 \Delta I_i^k + B_{i,4}^k$$

where:
$$B_{i,4}^{k} = \lambda_1 N_{i,1}^{k} - \lambda_2 N_{i,2}^{k} - (b_{L1}^{k} - b_{L2}^{k}) - (b_{L1,i} - b_{L2,i})$$

 $\Delta I_i^k = \frac{L4_i^k - B_{i.4}^k}{\varepsilon}$

Carrier phase bias: constant for continuous data arc

International GNSS Service (IGS) Global Ionosphere Maps (GIMs),
 2.5x5.0 deg @ 2 hours, combinations of GIMs provided by ACs,
 carried out at UWM in Olsztyn:

- CODE (SH TEC modeling, DD_L4, also available @1 hour)
- ESA (SH TEC modeling, P4, also available @1 hour)
- JPL (three shell model, GAIM, also available @15-minutes)
- UPC (two layer tomography, splines TEC modeling)
- NRCan (SH TEC modeling)
- **WHU (SH TEC modeling)**
- UPCs UQRG (tomography, kriging, @15 minutes)

- Prof. M. Hernandez-Pajares et al. validated these products against TEC derived from altimeter data (2002-2015) in his presentation at recent IGS Workshop in Sydney (see: Hernandez-Pajares et al. 2016 "Comparing performances of seven different global VTEC ionospheric models in the IGS context")
- MHP also compared reference sTEC variation during four selected days of 2015 at ~50 globally distributed stations (not used in models' production)

UPC Ion-SAT validation results

AC/GIM	Altim-GIM std in TECU	Altim-GIM rel. err. %	dSTEC rel. err. %
IGSG	3.9	19.9	28.9
CODG	4.3	22.0	27.8
ESAG	5.3	26.6	33.0
JPLG	4.1	21.2	31.0
UPCG	3.9	19.7	26.9
EMRG*	4.8	26.2	33.6
WHUG*	4.6	24.8	30.7
UQRG	3.6	17.8	20.5

Hernandez-Pajares et al. 2016

Global GIMs – summary:

□ low temporal and spatial resolutions

□ relatively low accuracy, mostly due to:

- smoothing effect of SH
- often usage of carrier phase-smoothed pseudoranges
- simple SLM mapping function

UWM-RT1 IONOSPHERE MODEL

UWM-RT1 IONOSPHERE MODEL

OBSERVATIONAL DATA:

- □ L1&L2 carrier phase data from:
 - ✓ **50** GNSS stations of Polish **ASG-EUPOS** network.
 - ✓ >200 GNSS stations of *EPN* (EUREF Permanent Network).
- dual-frequency carrier phase and pseudorange <u>GPS + GLONASS data</u>.
- sampling interval: 60/120 seconds.
- elevation cut-off: 30°.

UWM-RT1 IONOSPHERE MODEL

Example IPP locations (GPS+GLONASS)

Test period: 14-20.03.2015 (DoY 73-79, 2015)

TEC maps during quiet day (75/2015) 75/2015 10:00:00

TEC maps during stormy day (76/2015) 76/2015 10:00:00

VTEC Validation: - post-fit residual analysis

QUIET DAY

WROC 75/2015

QUIET DAY

WTZR 75/2015

STORMY DAY

WROC 76/2015

STORMY DAY

WTZR 76/2015

RMS of post fit residuals for the analyzed TEC maps (vTEC) [TECU]

DOY	UWM – rt1	UQRG	IGS	CODE	NeQuick
73	0,48	0,86	0,77	1,66	1,89
74	0,49	0,85	0,76	1,87	1,57
75	0,53	0,92	0,82	1,41	1,32
76	0,65	1,28	1,63	2,47	4,48
77	0,24	0,55	0,75	1,33	2,07
78	0,23	0,61	0,77	1,80	2,17
79	0,19	0,56	0,81	1,18	1,47

RMS of post fit residuals for the analyzed TEC maps (sTEC) [TECU]

DOY	UWM — rt1	UQRG	IGS	CODE	NeQuick
73	0,84	1,28	1,15	2,65	2,92
74	0,87	1,27	1,14	2,98	2,49
75	0,97	1,38	1,22	2,23	2,04
76	1,09	1,93	2,37	3,88	7,18
77	0,39	0,84	1,11	2,12	3,23
78	0,38	0,92	1,18	2,91	3,42
79	0,33	0,84	1,16	1,88	2,27

The overall RMS based on all days, stations and satellite arcs (vTEC) [TECU]

UWM – rt1	UQRG	IGS	CODE	NeQuick
0,42	0,83	0,91	1,70	2,17

The overall RMS based on all days, stations and satellite arcs (sTEC) [TECU]

UWM – rt1	UQRG	IGS	CODE	NeQuick
0,73	1,24	1,35	2,70	3,44

NEXT STEPS:

□ APPLICATION OF IONOSPHERE MAPPING FACTORS (GFZ)

- SHOULD ALLOW FOR INCLUDING DATA DOWN TO 10-15 DEGS.
- THIS IN TURN MAY EXTEND THE RANGE OF THE MODEL
- AND ALSO MAY REDUCE THE NUMBER OF STATIONS

□ VALIDATION IN PPP (WUELS AND GFZ)

FUTURE:

- PROVIDING GLOBAL MODEL
- **REAL-TIME APPLICATION**
- **3D** MODELING

Thank you for your attention!

Backup slides

SINGLE LAYER MODEL (SLM)

http://grupposole.astrofili.org/

Ζ

R

- the satellite's zenith distance at the receiver's location.
- z' the satellite's zenith distance at the ionospheric pierce point.

- the mean earth radius.
- H the height of the single layer.