

Development of interface for GNSS and GIS integration by using free open source software

llieva-Tsvetkova T., Gekov S.

Geodesy and Geoinformatics Dept. University of Architecture, Civil Engineering and Geodesy Sofia, Bulgaria

Motivation – Surveying and geodetic practice nowadays

The standard tasks in geodetic practice that are performed every day:

 \odot Survey Control Networks – accuracy of 2-5 cm

 \odot Surveys – accuracy of 5-10 cm

 \odot Tracing – accuracy of 5-10 cm

• Geospatial data collection (incl. real time tracking) – accuracy of submeter or decimeter level

What is important for the practice:

 \odot Time for obtaining the solution

 \circ Accuracy

 \circ Cost

GNSS and GIS – common use

Application of RTK/NRTK, DGPS and PPP methods for real time data collection:

- \circ Survey Control Networks accuracy of 2-5 cm RTK/NRTK
- \odot Surveys accuracy of 5-10 cm RTK/NRTK
- \odot Tracing accuracy of 5-10 cm RTK/NRTK
- \circ Geospatial data collection accuracy of submeter or decimeter level DGPS and PPP

What are the basic advantages of GIS:

- \circ Data collection, maintenance, management, classification and analysis
- \odot Data layers from many sources
- $\ensuremath{\circ}$ Works with databases
- \odot Wide variety of coordinate systems and projections
- \circ Wide variety of coordinate transformation methods

The use of open source software

GNU General Public License

Redistribution and use in source and binary forms, with or without modification, are permitted.

Redistributions of source code must retain the copyright notice.

Redistributions in binary form must reproduce copyright notice in the documentation and/or other materials provided with the distribution.

If you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

•••

GPL V2, GPL V3

Integration of GNSS and GIS by using RTKLIB and QGIS open source software

Standard Functionality

using RTKLIB and QGIS open source software

Project Edit View Layer Settings Plugins Vector Raster 	Database Web SurveyingCalculation Processing Help ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	⊧ ≣ ¤ ∑ <u></u> - □ * <u></u> □		Stanuaru Functionality
	ج 🛃 🔍 🧟 🚽 🔜 ا	🗏 🛤 🔽 🔜 🗕 📬 👘		
(abc 🚳 (abc (abc (abc) 🛃 📝 👔			T	
	🖬 💗 🌰 🐜 蒙 👶 🌒 🖋 🕅	। 📏 者 😪 🚷 🎺	📁 🙆 🎾 🍕	
<table-of-contents> 📫 🦨 🎜 🏠 🎇 🖵 🖛 🗛</table-of-contents>	nformation 🛛		The NMEA 0183 Pro	otocol
	Add Point Add track point	G	GGA Global for a G	Positioning System Fix Data. Time, Position and fix related data PS receiver
MSSQL Oracle PostGIS 	Image: Constraint of the second se	v output_ppp - Feature Attribut	<pre>1</pre>	<pre>11 2 3 4 5 6 7 8 9 10 12 13 14 15 .ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxx*hh) orth or South) ast or West) ty Indicator, ot available, ix, rential GPS fix satellites in view, 00 - 12 l Dilution of precision ltitude above/below mean-sea-level (geoid) antenna altitude, meters eparation, the difference between the WGS-84 earth .and mean-sea-level (geoid), "-" means mean-sea-level below ellipsoid geoidal separation, meters fferential GPS data, time in seconds since last SC104 9 update, null field when DGPS is not used ial reference station ID, 0000-1023</pre>
Connected to GPS device.	S Coordinate:	23.3947156,42.5562976 S	cale 1:209 💌	

using RTKLIB and QGIS open source software

Why Standard Functionality is not enough?

- 1. QGIS only uses NMEA as data input
- 2. The tool makes points with geometry characteristics only, but further information about the solution is not available
- 3. There are many others things that matter, so if we want to compare the results we should keep in mind:
 - Positioning mode
 - Solution type
 - Satellite systems
 - Frequency type
 - o Elevation mask
 - Ionosphere correction
 - Troposphere correction
 - \circ Ephemeris
 - Clocks
- 4. The use of coordinate systems and projections the results must be in the same system and frame

time GNSS measurements in GIS environment

🔏 NME	A0183_Tracker			8 ×
			GPS_Week	
Host	localhost	Local Time	Local Time	
Port	2947	GPS Time	GPS Time	
	Test Connection	Latitude	Latitude	
	Connect	Longitude	Longitude	
	1)NMEA_0183 -	Solution	Solution	
	2)Lat/Lon/Height	Number of satelites in view	Number of satelites in view	
		HDOP	Elevation (Elipsoid)	
		Elevation (Geoid)	Standart Deviation North	
		Elevation (Elipsoid)	Standart Deviation East	
		Age	Standart Deviation Elevation	
		Code	Standart Deviation NEast	
		[]	Standart Deviation EEelev	
	Exp	ort log file	Standart Deviation NElev	
			Code	
			Track Point	

time GNSS measurements in GIS environment

	A0182 Tracker			_		NMEA0183_Tracker		25.3.78.96	? ×
10	AUTOS_Hackel			coc west				GPS_Week	1913
				GPS_Week	н	Host localhost	Local Time	Local Time	09:03:52.561000
Host	localhost	Local Time	08:59:21.005000	Local Time	Р	Port 2947	GPS Time	GPS Time	194405.000
Port	2947	GPS Time	055517.00	GPS Time			t-Photo (
	Test Connection	Latitude	42.55609094	Latitude		Test Connection	Latitude	Lautude	42.556088599
	Disconnect	Lonaitude	23,39475212	Longitude		Disconnect	Longitude	Longitude	23.394753037
		Colution		Coluños (2)Lat/Lon/Height 💌	Solution	Solution	ррр
	I)INMEA_0183	Solution		Soluton			Number of satelites in view	Number of satelites in view	8
		Number of satelites in view	8	Number of satelites in view			HDOP	Elevation (Elipsoid)	1119.2688
		HDOP	1.0	Elevation (Elipsoid)			Flows King (Consid)		
		Elevation (Geoid)	1076.009 M	Standart Deviation North			Elevation (Geold)	Standart Deviation North	1.2037
		Elevation (Elipsoid)	1119.666 M	Standart Deviation East			Elevation (Elipsoid)	Standart Deviation East	0.7879
		Age	[Standart Deviation Elevation			Age	Standart Deviation Elevation	2.6639
		Code					Code	Standart Deviation NEast	-0.2238
				Standart Deviation NEast				Standart Deviation EEelev	-0.5055
				Standart Deviation EEelev		Export	og file	Standart Deviation NElev	-1.0770
	Export	t log nie		Standart Deviation NElev					-1.0770
				Code				Code	
				Track Point				IT ACK POINT	

time GNSS measurements in GIS environment

🌾 QGIS 2.10.1-Pisa		a a 54					and the
Project Edit View Layer Settings	s Plugins Vector Raster Database Web Su	urveyingCalculation Proces	sing Help				
🛃 🖑 🍣 🗩 🔎	® 🖾 💭 💭 🗛 🔂 🔍	2 🔍 - 💦 - 💪	ε 📰 🚟	Σ 🔤 🖣 🥊	P 📩 🗂 🕽	T	
abc abc abc abc abc	e 📲 🛛 🗾 💕 🔚 💗 🚖 🇞	• 😼 👌 🌏 a	🖋 💇 🔌	🦄 🤦 🕶 sối	. 🕼 🔏 🍕) 🗾 🙆 🏓	
📲 🤫 🎸 🎜 🏂	£ 🎇 🖵 🗳 🖉						
Browser Concerns	nonan PX						٦,
	Attribute table - points :: Features total: 2 filtered	d: 2 selected: 0				- 0 X	ł
E G:/ H:/ MSSOI	/ 🗟 🛱 🗞 🔩 🖾 🌺 🌮 🕫					?	
Oracle	lat lon solutio	on satelites	hdop	elev_g	elev_e	type	
PostGIS NMEA_Tracker O	42.55610292 23.39474146 Fixed	15	1.0	1071.989	1115.646	tap	11
public	42.55610306 23.39474125 Fixed	15	1.0	1071.982	1115.639	gaz	
points_lih 		I					
⊡≺ test							
obooobbooobboobboobboobboobboobboobboo							
A 🔍 🕇 🕸 🛱 🗔 🚺	Show All Features						
points							
X • Tree - 1							
🗙 🔍 Тар	0						
	•						
points_llh							
🗙 💿 Tree - 1							
О Тар							
······ 🗷 🛧							
Toggles the editing state of the current lay	yer	S Coordinate:	42.5561106	4,23.39474296	Scale	1:4 v Rota	ation

Spatial database – PostgreSQL with extension PostGIS, EPSG coordinate systems

Usually, we don't use only GNSS data but make combinations with other types of data.

Even if we perform GNSS measurements only => Coordinate conversion and transformations are to be applied

Every GNSS measurement, ever taken, is related to current measurement epoch and if the obtained coordinates must be compared with previously obtained ones, where the time between the two epochs is more than a few months, an epoch-conversion model must be used. The static measurements for example, due to the post processing, the coordinates obtained for the newly determined points are related to the coordinates of the known ones. Similar is the situation with the Real time Kinematic measurements, but this is not the case for the stand alone positioning, especially for precise point positioning. **It is necessary such conversion to be applied when using global reference frames, because of the velocities of the points.**

If the time period between the two measurements is few years or even more the transformation most probably will include and change of the realization of the system – change of the reference frame. In addition, for analysis or other purposes the X,Y,Z coordinates of the points could be used, but also B,L,H, or projected coordinates, related to some specific type of projection, so coordinate conversion is commonly used for such case.

This is possible with the use of spatial database with applying transformations with predefined parameters.

Working with Spatial database – PostgreSQL with extension PostGIS, EPSG coordinate systems

	ITRS, ITRF 200	8, Epoch 200	5.0			0	perationMethod [Time-dependen	t Position Vector	
Name	X [m]	Y [m]	Z [m]				Code: EPSG::1053 Name: Time-dependent Position Vector	tfm (geocentric)	
SOFI	4319372.089	1868687.782	4292063.938						
BUCU	4093760.865	2007793.806	4445129.975				Operation is Reversible: yes Method Parameters	GeodeticCh	(S (geocentric) [ITRF2008]
ISTA	4208830.308	2334850.312	4171267.248	Input				Name: ITRE	11:0332 12008
ORID	4498451.690	1708266.983	4173591.867	Frame :	ITRF2008 V		X-axis translation	Type: geoce	entric
PENC	4052449.472	1417681.124	4701407.105	Epoch :	2005 🔻 . 00 🔻		Z-axis translation	⊕Area o	f Use [World]
MIKL	3698553.985	2308676.003	4639769.494	SOFI 4319372	2.089 1868687.782 4292063.938 -0.0170 0.0188 0.0089		X-axis rotation	Geode	tic Datum [International Terrestrial
				BUCU 4093760	0.865 2007793.806 4445129.975 -0.0163 0.0179 0.0107 0.308 2334850.312 4171267.248 -0.0171 0.0230 0.0068		Y-axis rotation Z-axis rotation	Code: E	PSG::1061
	ITRS, ITRF 200	5, Epoch 200	0.0	ORID 4498451	1.690 1708266.983 4173591.867 -0.0153 0.0196 0.0087		Scale difference	Name: I	nternational Terrestrial Reference Frame 200
Name	X [m]	Y [m]	Z [m]	PENC 4052449 MIKL 3698553	9.472 1417681.124 4701407.105 -0.0179 0.0173 0.0095 3.985 2308676.003 4639769.494 -0.0200 0.0151 0.0087		Rate of change of X-axis translation	⊕ Alia	ses
SOFI	4319372.175	1868687.690	4292063.892				Rate of change of Z-axis translation	Anchor	Definition: Origin at geocentre. The ITRF2008
BUCU	4093760.948	2007793.719	4445129.920				Rate of change of X-axis rotation		a of Use [World]
ISTA	4208830.395	2334850.199	4171267.213	Output			Rate of change of Z-axis rotation		a of osc [Horid]
ORID	4498451.768	1708266.887	4173591.822	Frame :	ITRF2005 V		Rate of change of scale difference	Code	x FPSG-7019
PENC	4052449.563	1417681.039	4701407.056	Epoch :	2000 ▼ . 00 ▼			Nam	e: GRS 1980
MIKL	3698554.086	2308675.930	4639769.449	SOFT 4319372	2.17610 1868687.68890 4292063.89280 -0.01670 0.01880 0.00	1890		⊕ /	liases
				BUCU 4093760 ISTA 4208830 ORID 4498451	0.94830 2007793.71750 4445129.92100 -0.01600 0.01790 0.01 0.39550 2334850.19830 4171267.21320 -0.01680 0.02300 0.00 1.76870 1708266.88570 4173591.82270 -0.01500 0.01960 0.00	1070 0680 0870		Shap Semi Inver Prin	e: Ellipsoid -Major Axis: 6378137 <u>metre</u> se Flattening: 298.257222101 <u>unity</u> ne Meridian [Greenwich]

Further works

Making modifications of the output of RTKLIB software

Making modifications of the solutions

Making modifications

Analyzing the different types of solutions and make comparison in order to be obtained the most efficient ones

Applying the coordinate conversion and transformations as a part of the interface

References

- 1. <u>http://www.rtklib.com/rtklib_support.htm</u>
- 2. <u>http://www.qgis.org/</u>
- 3. <u>http://postgis.net/</u>
- 4. <u>http://www.postgresql.org/</u>
- 5. <u>https://www.epsg-registry.org</u>
- 6. <u>https://www.python.org/</u>
- 7. <u>http://www.epncb.oma.be/</u>
- 8. <u>https://igs.bkg.bund.de/</u>
- 9. <u>http://itrf.ensg.ign.fr/</u>

Thank You for Your Attention!