International Association of Geodesy (IAG), Commission 4 Symposium

4.0 A NNOUN CEMENT POSITIONING AND APPLICATION SYMPOSIUM IAG COM. 4 WROCLAW POLAND 04 2016 09 51.11283 17.063761 3835751.626 1177249.744 4941605.054 APPROX POSITION B / 1 Emerging Positioning Technologies 2 Geospatial Mapping and Engineering Applications 3 Atmosphere Remote Sensing 4 Multi-Constellation GNSS

RINEX VERSION / TYPE EVENT NAME / AGENCY LOCATION / CITY / COUNTRY TIME START / END SESSION NO SESSION NO / TOPIC SESSION NO / TOPIC

GNSS-derived IWV using G-Nut/Tefnut vs. radiometer data: a case study

Pawel GOLASZEWSKI*, Pawel WIELGOSZ, Katarzyna STEPNIAK

University of Warmia and Mazury in Olsztyn

*Corresponding author's e-mail: pawel.golaszewski@uwm.edu.pl

IAG Commission 4 Positioning and Applications Symposium, Wroclaw 2016

MOTIVATION

- COST ES1206 Benchmark Campaign dataset.
- Validation of GNSS derived ZTD and IWV by comparing it to the microwave radiometer data.
- Testing the software capabilities for future research and applications.

Microwave radiometer

- Two microwave radiometers are located in POTSDAM and LINDENBERG.
- High quality IWV data.
- Benchmark for the GNSS-derived ZTD/ZWD estimates.

Case study

- Data was collected from COST ES1206 Benchmark Campaign repository.
- Two radiometers from benchmark: POTSDAM and LINDENBERG.
- 26 days: 29.05 23.06.2013
- Period includes the occurrence of severe weather events.

GNSS4SWEC WG1 BENCHMARK - GNSS REFERENCE STATIONS DATASET

Data and software configuration

<u>G-Nut/Tefnut processing:</u>

- GNSS data processed in PPP mode.
- IGS final orbit and clock corrections.
- Troposphere a priori model GPT.
- Time interval 5 min.

IWV conversion:

• IWV =
$$\frac{ZWD}{10^{-8}(k_2' + \frac{k_3}{T_m})R_w}$$

• Refraction index from Bevis et al.(1992)

Refference data:

- Potsdam time interval 5 min
- Lindenberg time interval 10 min

Radiometer data screening

- \bullet IWV values for Potsdam and Lindenberg exceeded respectively 200 kg/m² and 300 kg/m².
- Range check deleting values exceeding 50 kg/m^2 .
- Outliers check deleting values exceeding (median + 2.5*std).

IWV at POTSDAM

Correlation = 92.27%

IAG Commission 4 Positioning and Applications Symposium,

Wroclaw 2016

Residuals chart at POTSDAM

IAG Commission 4 Positioning and Applications Symposium, Wroclaw 2016

Data statistics at POTSDAM

IWV at LINDENBERG

Correlation = 90.36%

IAG Commission 4 Positioning and Applications Symposium, Wroclaw 2016

Residuals chart at LINDENBERG

IAG Commission 4 Positioning and Applications Symposium, Wroclaw 2016

Data statistics at LINDENBERG

Sensitivity of radiometer

According to historical weather data, the storm events occured in Berlin i.a.:

- 30.05.2013
- 14-15.06.2013

• 20-21.06.2013

Mostly, these events are correlated with the extremely high values of IWV measured with the radiometer located in Potsdam.

Example link:

https://www.wunderground.com/history/ai rport/EDDT/2013/6/20/WeeklyHistory.html ?req_city=Poczdam&req_state=&req_state name=Germany&reqdb.zip=00000&reqdb. magic=1&reqdb.wmo=10379

Summary

Conclusions:

- GNSS-derived IWV is highly correlated with the radiometer data, mean residuals do not exceed 8-10%.
- G-Nut/Tefnut software is sufficiently accurate with the ZTD/ZWD estimation for IWV conversion.
- Radiometers have their disadvantages

Plans for future:

- Perspectives for real-time solutions.
- IWV estimates from near real-time PPP solution for Polish network.
- Testing various forecasting methods.

Thank You!

This work has been supported by Polish National Science Centre grant No. UMO-2015/19/B/ST10/02758.