RTIM-WG: IAG’s Real Time Ionosphere Monitoring Working Group
Current status, outcomes and first results

Alberto García-Rigo¹, David Roma-Dollase¹,², Manuel Hernández-Pajares¹, Zishen Li³, Michael Terkildsen⁴, Reza Ghoddousi-Fard⁵, Denise Dettmering⁶, Eren Erdogan⁶, Haris Haralambous⁷, Yannick Béniguel⁸, Jens Berdermann⁹, Martin Krieger⁹, Anna Krypiak-Gregorczyk¹⁰, Tamara Gulyaeva¹¹, Attila Komjathy¹², Panagiotis Vergados¹², Joachim Feltens¹³,¹⁹, René Zandbergen¹³, Tim Fuller-Rowell¹⁴, David Altadill¹⁵, Nicolas Bergeot¹⁶, Andrzej Krankowski¹⁷, Loukis Agrotis¹⁸, Ivan Galkin²⁰, Raul Orus-Perez²¹

IAG Commission 4 Positioning and Applications Symposium
September 5, 2016, Wroclaw, Poland
Affiliations

1. UPC-IonSAT research group, Technical University of Catalonia, Spain
2. Department of Engineering: Electronics, University of Barcelona (UB), Spain
3. Academy of Opto-Electronics, Chinese Academy of Sciences (CAS), China
4. Bureau of Meteorology, Space Weather Services, Australia
5. Canadian Geodetic Survey, Natural Resources Canada / Government of Canada (NRCan), Canada
6. Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Germany
7. Frederick University Cyprus, Cyprus
8. IEEA, France
9. Institute of Communications and Navigation, DLR, Germany
10. Institute of Geodesy, UWM, Poland
11. Institute of Terrestrial Magnetism, ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Russia
12. NASA - Jet Propulsion Laboratory (JPL), California Institute of Technology, USA
13. Navigation Support Office, ESA-ESOC, Germany
14. NOAA affiliate, USA
15. Observatori de l’Ebre (OE), CSIC - Universitat Ramon Llull, 43520 Roquetes, Spain
16. Planetology and Reference Systems, Royal Observatory of Belgium (ROB), Belgium
17. Space Radio-Diagnostics Research Centre, UWM (SRRC/UWM), Poland
18. SYMBAN Limited, ESA-ESOC, Germany
19. Telespazio VEGA Deutschland GmbH c/o ESA-ESOC, Germany
20. University of Massachusetts Lowell, Space Science Lab, USA
21. Wave Interaction and Propagation Section (TEC-EEP), ESA-ESTEC, The Netherlands
Outline

1. IAG’s RTIM-WG Introduction
2. Main goals and outcomes / new potential ideas
3. On-going activities and first results
4. Conclusions
IAG’s RTIM-WG - Introduction

• The Real Time Ionosphere Monitoring is a new Working Group (RTIM-WG) within the International Association of Geodesy (IAG) Subcomission 4.3 on Atmosphere Remote Sensing.
• The WG will run for the next four years (2016-2019).
• The current number of members is 25 from 21 international institutions, including experts in the field from multiple countries world-wide:
 Australia, Belgium, Canada, China, Cyprus, France, Germany, the Netherlands, Poland, Russia, Spain, UK and USA
• The expertise of the participating research groups is complementary.
• There are real-time (RT) and near real-time (NRT) models, mainly based on GNSS and ionosonde data (based on IGS Iono-WG Global Ionospheric Maps, GIMs, or the International Reference Ionosphere, IRI).
• Possibility to derive global and regional maps on multiple ionospheric parameters, including Total Electron Content (TEC), F2 layer critical frequency (foF2), F2 layer peak (hmF2), bottomside thickness (B0) and ionospheric disturbance W-index.
IAG’s RTIM-WG main goals and outcomes

(1) A summary of the **current status** of RT Ionosphere Monitoring
(2) **Comparison** of existing RT Ionosphere Monitoring approaches from different perspectives **for a specific period**
(3) A **procedure to automatically compare** on a daily basis a subset of **real time ionosphere products** providing the results in a common compatible IONEX-like format (or a future IONEX version supporting it). Potential validation with external data sources, such as dual-frequency altimeters
(4) **Open discussion** (through a common mailing list) towards **new concepts** on RT Ionosphere Monitoring.
IAG’s RTIM-WG new potential ideas

• Beyond the stated goals, new ideas for potential work have already arisen after discussions within the team. Of particular interest are:
 ➢ The **improvement** in the dissemination and format of **GIMs** in order to **properly support real time** usage (expecting progress in the time delay between their production and their online availability)
 ➢ The team potential support on **quality control and validation of existing products/services** (including the possibility to assess the performance by means of standard and precise point positioning techniques)
 ➢ Find out ways to **combine different regional/global products** (keeping in mind the importance on disturbed periods)
 ➢ Drawing **recommendations and arranging training and dissemination activities** for the community.
On-going activities: RT/NRT status

- A Google form has proven to be useful as a first step to summarize the status of RT/NRT ionosphere monitoring activities within the group.

- Some RT/NRT ionospheric products within the group are shown at a glance in the next slides (kindly provided by DGFI-TUM, Lowell, NRCan, and ROB).
DGFI-TUM Ionosphere Model

Globally distributed GNSS data from the IGS network are sequentially preprocessed in hourly batches using the geometry free linear combination technique. These batches are used to compute global VTEC maps in near-real time.

The spatial representation of VTEC is performed by a **two-dimensional series expansion in polynomial and trigonometric B-splines functions**. A Kalman filter is fed sequentially with the preprocessed observations to estimate the unknown parameters of our VTEC model.

\[
\begin{align*}
y_{GPS} + e_{GPS} &= m(z) VTEC + b_{r, GPS} + b_{s, GPS} \\
y_{GLO} + e_{GLO} &= m(z) VTEC + b_{r, GLO} + b_{s, GLO}
\end{align*}
\]

\[
VTEC(\lambda, \varphi) = \sum_{k_1=0}^{K_1-1} \sum_{k_2=0}^{K_2-1} d_{k_1, k_2} J_{k_1, k_2}^2 J_{k_1, k_2}^2 (\varphi) T_{k_1, k_2}^2 (\lambda)
\]

Figure 1: **Global VTEC modeling using B-spline representation.** The B-spline coefficients \(d_{...}\) are the unknowns (high-lighted by the red edge in the last equation) as well as the DCBs \(b_{...}\) (highlighted by the red boxes in the first two equations)

Figure 2 Left: **Non-uniform adaptive B-spline representation (NABS)**, right: **uniform B-splines representation (UBS)**. The colored dots show the data locations (Ionospheric Pierce Points, IPPs); the colors mean the VTEC magnitude (blue low, red high), The red line is the Greenwich meridian.
Real-Time IRI

3D global bottomside ionosphere in real-time

PORT STANLEY

Diurnal fit to GIRO data

4D data assimilation:
24-hour fit of differences between IRI and GIRO
+ diurnal trend analysis

PORT STANLEY data courtesy Sarah James, RAL UK

Global Spatial fit

Jones-Gallet Gk basis (76)
= total map coefficients: 1064
[24-hour global weather of C]

x 52 GIRO stations

Low confidence autoscaling
Flow diagram of NRCan’s near-real-time global TEC map generation

For further details about other Natural Resources Canada (NRCan) GPS ionospheric products see:

ROB-IONO software

- **Input data:** Real-time data from the EUREF Permanent Network (~120 stations, Bruyninx et al. 2012)

- **ROB-TEC maps since 2012 (Bergeot et al. 2014):**
 - **vTEC maps over Europe + Variability**
 - www.gnss.be
 - **IONEX files**
 - ftp://gnss.oma.be

 Sampling rate: 15 min.
 Grid extent: Long W15° / E25°
 : Lat N35° / N62°
 Grid resolution: 0.5° x 0.5°
 Latency: ~3 minutes
UPC-IonSAT TOMION: Computation of global VTEC maps (UPC)

The TOMographic Model of the IONospheric electron content (TOMION) is fed with global GPS NTRIP datastreams in order to compute in real time, among others, UPC global VTEC maps.

Ground GPS data (~ 150 worldwide recs)

The TOmographic Model of the IONospheric electron content (TOMION) is fed with global GPS NTRIP datastreams in order to compute in real time, among others, UPC global VTEC maps.

Fig. 1. Layout summarizing the global VTEC computation from ground GPS data by means of the UPC TOMION software, including the main tomographic equation solved for (data: ionospheric combination of carrier phases L_I, and length intersection within each voxel, Δl_i; unknowns: its ambiguity B_I, the STEC, S, which includes the mean electron density within each given voxel, $N_{e,i}$).

$$L_I = S + B_I \approx \sum_{i=1}^{N_{e,i}} N_{e,i} \Delta l_i$$
Outline

1. IAG’s RTIM-WG Introduction
2. Main goals and outcomes / new potential ideas
3. On-going activities and first results
4. Conclusions
On-going activities: St. Patrick storm

- Results on the RT/NRT products (plots and/or textual) for the days surrounding St. Patrick storm (on day of year 76, 2015) are being provided by the different members to get a global overview of the impact on ionosphere from multiple perspectives. First inputs are shown in the next slides (kindly provided by IEEA, IZMIRAN, Lowell, NRCan and ROB).

\[\text{(Source: NOAA/SWPC - estimated Kp)}\]

\[\text{(Source: WDC for Geomagnetism Kyoto - Dst Real-Time)}\]
St. Patrick storm: Scintillation observations / doys 75-82 2015 (IEEA)

S4 index Dakar

Scintillation map over Dakar
St. Patrick storm: W-index global maps (IZMIRAN)

Fig. 8. Dynamics of the global maps of W-index in 1h resolution during the super-storm on 18 March, 2016, derived from JPL GIM-TEC maps

[Gulyaeva et al. Ionosphere: Modelling the ionospheric weather for telecommunication and navigation. In: Scientific cooperation between RAS and PAS in the field of Space Research: Results of joint investigations . Moscow, IKI, RAS, 2016, in Russian and Polska (in press)]
St. Patrick storm: IRTAM + GIRO (Lowell)

Summary: IRTAM + GIRO Capability
Example of March 17, 2015 substorm, very peculiar

DEVIATION FROM EXPECTED QUIET-TIME BEHAVIOR

- F2 plasma depletion
- F2 peak height unchanged
- Thicker F2 layer bottom

Super-fountain
Layer is uplifted
Layer shape is same

ΔfoF2 ΔhmF2 ΔB0

IRTAM data from Lowell GIRO Data Center, GAMBIT Database, http://giro.uml.edu/IRTAM
Statistical products

Prediction:
Median of the VTEC for the 15 previous days.

March 17th 2015 event

St. Patrick storm: VTEC EU maps (ROB)
St. Patrick storm: VTEC EU maps (ROB)

March 17, 2015 - Onset 05:00 UTC – Dst = -223 nT – Geom. Storm (Kp=7)

![Graph showing Dst Index, Relative Δ(%) for different latitudes: a) High-latitudes, b) Mid-latitudes, c) Low-latitudes. The graph also includes a map of Europe highlighting regions (a) b) and (c). The figure shows vTEC_{NRT} – \tilde{vTEC}_{15 prev days} and \tilde{vTEC}_{15 prev days}.]

- Relative vTEC (%)
- Variability
St. Patrick storm: Ionosphere VTEC response (DGFI-TUM)

- Global hourly mean VTEC variation during days between DOY 73 and DOY 78

- European Region hourly mean VTEC variation during days between DOY 73 and DOY 78

At day 76, 2015, a peak of the mean VTEC variations at the European region (lower image) as well as at the whole globe (upper image) are clearly shown.

At the following days (77 and 78), the mean VTEC variations decrease dramatically and can be clearly seen in the global mean VTEC map.

It should be noted that in a near real time run, some of the hourly GNSS stations cannot provide data on time, but they are available with latency. The dataset used in the computations is downloaded in the offline mode and, therefore, the computation includes some additional GNSS receivers.
St. Patrick storm: global maps of inter-frequency phase rate variations (NRCan)

At the Canadian Geodetic Survey of Natural Resources Canada about 130-150 globally distributed 1-Hz GPS stations (mostly those of the RT-IGS network with additional stations over Canadian region) are used in near-real-time to derive, among other statistics and products inter-frequency phase rate variations by means of mapped-to-zenith standard deviation of delta phase rate (sDPR) over 30 sec.

Inter-frequency GPS phase rate variations from RT-IGS stations over stormy day of March 17, 2015 and rather quiet day of March 16 as monitored in near-real-time are studied. Global maps of GPS phase irregularities (sDPR) derived at each ionospheric pierce point are presented in a UT hour and geomagnetic latitude coordinate system for comparison against common geomagnetic indices. For further details see:

An study of GPS phase scintillation occurrence in the context of solar wind coupling to the magnetosphere-ionosphere system and auroral electrojet currents during March 17-18, 2015 has been submitted to JGR.
St. Patrick storm: Rate of TEC index (ROTI)

The results in this and next slides have been obtained in the frame of European Space Agency’s MONITOR & MONITOR2 projects (ESA/ESTEC TEC-EEP).
St. Patrick storm: Single Receiver Medium Scale TIDs index (SRMTID)
St. Patrick storm: GSFLAI EUV rate proxy & SISTED solar flare detector (UPC)

Clear solar flare activity on doy 76 and previous days

These results have been obtained in the frame of European Space Agency’s MONITOR & MONITOR2 projects (ESA/ESTEC TEC-EEP)
On-going activities: VTEC IONEXs

- RT/NRT Vertical TEC IONEX files have been solicited on the period 45 to 59, 2016. This shall be used as a first check/comparison of Vertical TEC products in IONEX format from entities providing them within RTIM-WG.

- The consistency and accuracy of the products can be analysed against external assessment techniques (as it is done within IGS Iono-WG): for both vertical geometries over the oceans/seas (vs altimeter-VTEC) and for slant variation (GPS-dSTEC) over independent GPS receivers.

- It is important that the accuracy should be assessed from independent ionospheric measurements not taking part in the generation of any of the products.
VTEC IONEXs: CAS/DGFI/URTG first comp.

- Comparison of six different VTEC products: three RT from CAS (aoeg), CNES (cnsg) and UPC (urtg); one NRT from TUM (dgfi) and two traditional GIMs for reference, from UPC (uqrg) and IGS (igs).

JASON altimeter assessment

Europe

Global

Relative RMS error (%) for days of year 2016 from 45 to 59

VTEC IONEXs: CAS/DGFI/URTG first comp

dSTEC assessment

<table>
<thead>
<tr>
<th>GIM</th>
<th>RMS [TECU]</th>
<th>RMS max [TECU]</th>
<th>RMS min [TECU]</th>
<th>BIAS [TECU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOEG</td>
<td>11.8</td>
<td>22.6</td>
<td>4.8</td>
<td>-1.43</td>
</tr>
<tr>
<td>CNSG</td>
<td>9.2</td>
<td>18.8</td>
<td>3.0</td>
<td>0.21</td>
</tr>
<tr>
<td>URTG</td>
<td>8.2</td>
<td>14.9</td>
<td>3.4</td>
<td>0.30</td>
</tr>
<tr>
<td>DGFI</td>
<td>5.6</td>
<td>10.8</td>
<td>1.8</td>
<td>-0.57</td>
</tr>
<tr>
<td>IGSG</td>
<td>6.2</td>
<td>11.6</td>
<td>1.9</td>
<td>-1.01</td>
</tr>
<tr>
<td>UQRG</td>
<td>4.6</td>
<td>9.1</td>
<td>1.1</td>
<td>-0.61</td>
</tr>
</tbody>
</table>

From left to right: GIM, square root of the arithmetic mean of the RMS for all stations and days; maximum and minimum RMS for all stations; bias for all stations and days.

Conclusions

• First steps taken within the RTIM-WG are presented towards the identified objectives.
• First inputs on St. Patrick storm are presented. Data within the group will be analysed in more detail.
• A comparison of existing IONEX VTEC maps within the group has also started.
Thank you very much
Thank you very much
Back-up slides
St. Patrick storm: Global Electron Content (GEC from UQRG; 2-day latency)

- Clear impact on Global Electron Content trend (a positive phase, followed by a negative phase) from UQRG rapid GIMs.
- This shall also be checked with URTG GIMs (UPC real time VTEC global maps)

These results have been obtained in the frame of European Space Agency’s MONITOR & MONITOR2 projects (ESA/ESTEC TEC-EEP)
St. Patrick storm: Global Electron Content (GEC from UQRG; 2-day latency)

The detailed view shows two important GEC increases (+20%), separated by 6 hours, followed by a deep negative phase (almost -25%) ~18 hours later.
St. Patrick storm: UQRG VTEC snapshots @ 2h
VTEC directly observed from dual-frequency altimeters: a GNSS-independent ionospheric truth

Dual-frequency altimeter measurements provide an excellent and independent source for assessing GNSS-based VTEC models in difficult conditions (over seas & far from rec.).

In spite of the noise of the altimeter measurements (reduced by an sliding window of ~16 sec.; see right-hand figure, compared vs. final IGSG VTEC), the missing altimeter-topside electron content (typically up to few TECUs only) and the well known altimeter bias excess (few TECUs only), it still allows a very clear assessment and comparison of the errors of the different ionospheric models (considering in particular the daily standard deviations of VTEC\textsubscript{altimeter} – VTEC\textsubscript{GIM}), typically much larger and systematic

The GPS ionospheric carrier phase difference, ΔL_1 for a given pair rec.(j)-sat.(k), (regarding to the value corresponding to the higher elevation –Emax- ray in the phase-continuous arc of data), provides a very precise ionospheric truth of the STEC referred to the value at maximum elevation, dSTEC, in space and time (typically more accurate than 0.1 TECU).

It can be used to compare the performance of ionospheric models, which can be interpreted as an assessment of the corresponding VTEC (V), the mapping function being considered (M) and their time evolution.

PROS and CONS

<table>
<thead>
<tr>
<th>Technique</th>
<th>PROS.</th>
<th>CONS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTEC-altimeter</td>
<td>Independent VTEC assessment (accuracy of few TECU)</td>
<td>Only over oceans and seas</td>
</tr>
<tr>
<td>dSTEC-GNSS</td>
<td>Independent STEC assessment (precision ~ 0.05 TECU)</td>
<td>Close or over continents mainly</td>
</tr>
</tbody>
</table>

Complementary assessments