Analysis of equatorial ionospheric irregularities based on a two high rate GNSS station setup

Jens Berdermann¹,Norbert Jakowski¹, Martin Kriegel¹, Hiroatsu Sato¹, Volker Wilken¹, Stefan Gewies¹, Nikolai Hlubek², Mogese Wassaie ^{1,3}

<nowledge for Tomorrow

¹ Institute of Communications and Navigation, German Aerospace Center, Neustrelitz, Germany

² gateprotect GmbH, Leipzig, Germany

³ Washera Geospace and Radar Science Laboratory, Bahir Dar University, Ethiopia

Motivation

Impact of Ionospheric Irregularities on GNSS Applications

Airport Precision Approach

Scintillations

fluctuation

Signal

Frequent

Scintillation Monitoring Network of DLR

DLR operates a own high rate GPS receiver network for scintillation Infrequent measurement from high latitudes (Kiruna /Sweden) down to equatorial regions (Bahir Dar/Ethiopia). Scintillation data of several stations provided in real time via IMPC/SWACI <u>http://swaciweb.dlr.de</u>

Regional differences of scintillation occurence

Equatorial latitudes: Current small scale receiver network in Bahir Dar

DLR 1 50 Hz Javad receiver (10/2011)
DLR 2 50 Hz Javad receiver (06/2014)
TUB 50 Hz Septentrio receiver (01/2015)
IEEA 50 Hz Novatel receiver (06/2014)

Solar cycle 24

Small Scale Monitoring Network Bahir Dar

Benefit:

- Good location to observe phase and amplitude scintillations at low latitudes
- Current setup capable for receiving GPS, GLONASS and Galileo signals
- Cooperation with IEEA, TUB will produce valuable database for plasma bubble and plasma drift research

Problems:

• Power outages in Bahir Dar

Diurnal variation of scintillation activity at Bahir Dar

L1C S4 ionospheric pierce point somiliation

Time: 2012-04-10 17:00

S₄ Scintillation activity enhances regularly in Bahir Dar / Ethiopia after sunset

Scintillations occur primarily in North-South direction

Amplitude scintillations

 $S_{4} = \left(\frac{\left\langle I^{2} \right\rangle - \left\langle I \right\rangle^{2}}{\left\langle I \right\rangle^{2}}\right)^{1/2}$

Enhancement of S₄ at low elevation due to multipath effects. Effect has to be mitigated in subsequent analysis.

S ₄	Classification		
> 0.2	moderate		
> 0.6	strong		
> 0.9	extreme		

The monitoring of S4 derived from the DLR's worldwide distributed EVNET stations showed, that S4 values up to 0.1 are mostly caused by the natural noise of the signals intensity

Yearly Scintillation Occurance over Bahir Dar – GPS (L1,L2,L5), Galileo (E1,E2,E5A)

Scintillation largest: Solar terminator equals magnetic meridian

Daily Scintillation Occurance

Effect on L5 larger than on L1

GLONASS L2 strongly affected

GPS: 32 sats GLONASS: 23 sats Galileo: 4 sats

N. Hlubek, J. Berdermann, V. Wilken, S. Gewies, N. Jakowski, M. Wassaie, Baylie Damtie; Scintillations of the GPS, GLONASS, and Galileo signals at equatorial latitude, J. Space Weather Space Clim. 4 (2014) A22 DOI: 10.1051/swsc/2014020

Scintillation events recorded by both DLR stations in 2015

Month	Affected days	Activity/Relevance
February	3	moderate
March	6	strong
April	9	strong
May	7	moderate
December	1	moderate

Gap between May to December due to outage of msbd01 before modernization in October 2015.

Scintillation and TEC depletion patterns can be observed by monitoring the signal power and the slant total electrontent sTEC over time.

Stations are closely located in east west direction, which allows to estimate the zonal drift velocity and spatial dimension of plasma irregularities.

S4 comparision 28.02.2015 / G24

Signature (red line, exponentiallyweighted moving average, window size: 3 min) of S4 indices (grey dots) calculated for satellite G24 from different scintillation processors in comparison to the averaged elevation.

Link based comparison of amplitude scintillations

similar scintillation signatures with different hard-/software setup at same campus

different S4 scaling between TUB and DLR has to be clarified

Estimation of drift of TEC depletions possible by using cross correlation of high rate phase TEC data

Lag of several minutes!

Estimation of plasma bubble characteristics

- Observed sTEC depletion moving eastward within a time span of 1 hour and a maximum depletion of 10 TECU for satellite G24 over Bahir Dar, Ethiopia
- The plasma drift velocity is known also the geographic dimension of the irregularity region in east-west direction and can be estimated by multiplying the estimated drift velocity by the width of the TEC depletion signature in the time domain

Cross correlation of both DLR stations on 28 February 2015

Results

The overall irregularity drift velocity has been estimated from irregularity pattern velocity and the scanning velocity.

Date	LT	PRN	Direction	Velocity	Size	
28.02.2015	23:30	G24	eastward	81 m/s	292 km	M. Krie Berderm
28.02.2015	23:10	G29	eastward	80 m/s	144 km	
28.02.2015	24:10	G29	westward	102 m/s	312 km	
08.04.2015	23:00	G21	eastward	80 m/s	58 km	Mersha,
08.04.2015	23:00	G26	eastward	84 m/s	151 km	at Bahir activity
08.04.2015	23:30	G26	eatsward	78 m/s	187 km	(submitt

M. Kriegel, N. Jakowski, J. Berdermann, H. Sato, and M. W. Mersha, Scintillation measurements at Bahir Dar during the high solar activity phase of solar cycle 24, (submitted to Annales Geophysicae)

- In agreement with earlier results from GPS L1 signal eastward velocities of ionospheric irregularities at midnight in the south american sector (50-100 m/s) [Kil et al. 2000]
- G29 eastward propagation decreased and changed into westward direction
- Might come from dominant role of a disturbance dynamo associated westward thermospheric wind during magnetospheric disturbances

[Bhattacharyya et al. 2002, Abdu et al. 2003]

Summary & conclusion

- Seasonal statistics of S₄ with maxima around equinoxes confirms former studies, asymmetry between spring and autumn needs further investigation.
- GPS, GLONASS and Galileo systems show different sensitivity to ionospheric irregularities.
- Local network of scintillation receivers in Bahir Dar allows detecting plasma bubbles and their drift velocities.
- Drift velocities and size estimations are in agreement with earlier results from south american sector
- To explore the structure and dynamics of plasma bubbles more in detail, the current local GNSS network geometry should be optimized.
- Future studies will utilize the full network of high rate GNSS stations with its multi constellation links.
- Possible complementary spaceborn observations such as SWARM constellation or regional Beacon should be used.
- Detailed comparison with ionospheric irregularities at equatorial latitudes over South America

Thank you!

Contact:

DLR

Institut of Communication and Navigation

Dr. Jens Berdermann Kalkhorstweg 53 D-17235 Neustrelitz

fon: +49 3981 480 106 fax: +49 3981 480 123 mail: jens.berdermann@dlr.de

