

On the impact of tropospheric modeling on the results of VLBI analysis

<u>Kyriakos Balidakis</u>¹, T. Nilsson², F. Zus², B. Soja², R. Heinkelmann², S. Glaser¹, J. Douša³ and H. Schuh^{1,2}

kyriakos.balidakis@tu-berlin.de

¹Technische Universität Berlin, Institute of Geodesy and Geoinformation Science, Berlin, Germany ²GFZ German Research Centre for Geosciences, Space Geodetic Techniques, Potsdam, Germaany ³Geodetic Observatory Pecný, Research Institute of Geodesy, Topography and Cartography, Czech Republic

IAG Commission 4 Positioning and Applications Symposium, Atmospheric Remote Sensing

Wrocław, September 5th, 2016

Motivation

- Troposphere is the main *random* and *systematic error* source contributor in microwave-based space geodetic techniques such as GNSS and VLBI.
- Numerical Weather Models (NWMs) can augment geodetic analysis (e.g., background information) further upon.

In this presentation . . .

we investigate the impact of different *modeling* and *parameterization* of the tropospheric delay on VLBI data analysis.

... setting the stage

 $\tau_{trop}(\varepsilon, \alpha) = mf_h d_h^z + mf_w d_w^z + mf_g [G_{NS} \cos(\alpha) + G_{EW} \sin(\alpha) + G_{NN} \cos^2(\alpha) + G_{NE} \cos(\alpha) \sin(\alpha) + G_{EE} \sin^2(\alpha)]$

 ε : elevation

 α : azimuth

 $mf_{h,w,g}$: hydrostatic, non-hydrostatic and gradient mapping factor resp. $d_{h,w}^z$: zenith hydrostatic and non-hydrostatic delay resp. $G_{NS,EW}$: total linear (1st order) horizontal delay gradient components $G_{NN,NE,EE}$: total 2nd order horizontal delay gradient components

Balidakis et al.: On the impact of tropospheric modeling on the results of VLBI analysis

Some mapping functions

$$mf_{i}(\varepsilon) = \begin{cases} \frac{1 + \frac{a_{i}}{1 + \frac{b_{i}}{1 + c_{i}}}}{\sin(\varepsilon) + \frac{a_{i}}{\sin(\varepsilon) + \frac{b_{i}}{\sin(\varepsilon) + c_{i}}}}, i = h \lor w & \text{Marini, 1972} \\ \frac{1}{\sin(\varepsilon) + \frac{b_{i}}{\sin(\varepsilon) + c_{i}}} \\ \frac{1}{\sin(\varepsilon) \tan(\varepsilon) + 0.0032}, i = g & \text{Chen \& Herring, 1997} \end{cases}$$

Impact of mapping functions on VLBI analysis

Here we focus on:

□ A priori slant hydrostatic delay

A posteriori zenith non-hydrostatic delay

$$d_h^{\varepsilon} = m f_h \cdot d_h^z$$

 ∂au

$$\frac{\partial t}{\partial d_w^Z} = m f_w$$

PMF: Potsdam mapping functions

... comparisons $\delta d_i^{5^\circ}, i = h \vee W$

Balidakis et al.: On the impact of tropospheric modeling on the results of VLBI analysis

VLBI data analysis

□ Vienna VLBI Software, VieVS@GFZ (Gauß-Markov model)

- $\hfill\square$ We produced 3 solutions:
 - □ VMF1 (Böhm et al., 2006b)
 - GPT2w (Böhm et al., 2015)
 - PMF (Douša et al., 2016)

- All solutions determined w.r.t. ITRF2008 and USNO Finals EOP series, using the homogenized meteorological dataset and accounting for geophysical loading at the observation level.
- Daily estimates of station positions and EOPs, hourly ZWDs, 6-hourly gradients, . . .

Balidakis et al.: On the impact of tropospheric modeling on the results of VLBI analysis

... concerning meteorological data

VLBI analysis (zenith total delays)

Balidakis et al.: On the impact of tropospheric modeling on the results of VLBI analysis

VLBI analysis (station ellipsoidal heights)

Balidakis et al.: On the impact of tropospheric modeling on the results of VLBI analysis

VLBI analysis (network <u>scale</u>)

Balidakis et al.: On the impact of tropospheric modeling on the results of VLBI analysis

PMF Spatial resolution of NWM: 1.0° vs 0.5°

Balidakis et al.: On the impact of tropospheric modeling on the results of VLBI analysis

VLBI data analysis with Kalman Filtering

- □ Vienna VLBI Software, VieVS@GFZ, VIE_KAL (Nilsson et al., 2015)
- □ Group delay data from CONT14 featuring a 17 station network
- □ We produced 2 solutions:
 - PMF 1.0° spatial resolution
 PMF 0.5° spatial resolution

- Both solutions determined w.r.t. ITRF2008 and USNO Finals EOP series, using the homogenized meteorological dataset and accounting for geophysical loading at the observation level.
- Scan-wise estimates of station positions and EOPs, ZWDs, gradient components, . . .

Some results

Balidakis et al.: On the impact of tropospheric modeling on the results of VLBI analysis

Impact of a priori gradients (I)

Balidakis et al.: On the impact of tropospheric modeling on the results of VLBI analysis

Impact of a priori gradients (II)

Balidakis et al.: On the impact of tropospheric modeling on the results of VLBI analysis

VLBI data analysis with Kalman Filtering

- □ Vienna VLBI Software, VieVS@GFZ, VIE_KAL (Nilsson et al., 2015)
- □ Group delay data from CONT14 featuring a 17 station network
- \Box We produced 2 solutions:
 - APG gradients
 PMF (2nd order) gradients

- Both solutions determined w.r.t. ITRF2014 and USNO Finals EOP series, using the homogenized meteorological dataset and accounting for geophysical loading at the observation level.
- Scan-wise estimates of station positions and EOPs, ZWDs, gradient components, . . .

Bonus slide II: VLBI analysis (Ray-Tracing vs PMF)

Balidakis et al.: On the impact of tropospheric modeling on the results of VLBI analysis

Recapitulation

- Estimating b_i and c_i in addition to a_i does not affect the estimated parameters appreciably, given the grid spacing. E.g., the height difference rarely exceeds 1 mm and PW trends are not affected.
- Utilizing a finer resolution of the same NWM and the same ray-tracing algorithm, results in an offset at the mm level in the height time series during severe weather events.
- Loosely constrained a priori gradients have no impact on VLBI estimates from modern sessions.

In the future . . .

- □ Both VMF1 and PMF suffer from systematics, so we should replace the parametrized mapping approach by the rapid direct mapping concept (e.g. Eriksson et al., 2014; Zus et al., 2015).
- □ Implement ultra-rapid direct mapping in VieVS@GFZ as the default option (done!).

Selected References

- Balidakis, K., F. Zus, J. Douša, T. Nilsson, S. Glaser, B. Soja, M. Karbon, R. Heinkelmann and H. Schuh (2016a) On the impact of different mapping functions on geodetic and tropospheric products from VLBI data analysis. In Behrend, D., Baver, K.D. and Armstrong, K. (eds) Proceedings, 9th IVS General Meeting.
- Balidakis, K., R. Heinkelmann, A. Phogat, B. Soja, S. Glaser, T. Nilsson, M. Karbon and H. Schuh (2016b) *On the impact of inhomogeneities in meteorological data on VLBI data analysis*. In Behrend, D., Baver, K.D. and Armstrong, K. (eds) Proceedings, 9th IVS General Meeting
- Balidakis, K., R. Heinkelmann, T. Nilsson, Z. Deng and H. Schuh (2016c) *Effects of meteorological data on tropospheric products from VLBI*. Poster at the 2nd GNSS4SWEC summer school. Url: http://ftp.gfz-potsdam.de/GNSS/gnss4swec/Posters/Balidakis.pdf
- Böhm, J., B. Werl and H. Schuh (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geoph. Res., Vol. 111, B02406, doi:10.1029/2005JB003629
- Böhm, J., L. Urquhart, P. Steigenberger, R. Heinkelmann, V. Nafisi and H. Schuh (2013) *A Priori Gradients in the Analysis of Space Geodetic Observations*, in: Reference Frames for Applications in Geosciences, Proceedings of the Symposium in Marne-La-Vallée, 4-8 October 2010, edited by Z. Altamimi and X. Collileux, IAG Symposia No. 138, ISBN 978-3-642-32997-5, pp. 105-110, 2013, doi: 10.1007/978-3-642-32998-2_17
- Böhm, J., G. Möller, M. Schindelegger, G. Pain and R. Weber (2015) *Development of an improved blind model for slant delays in the troposphere (GPT2w)*, GPS Solutions, doi: 10.1007/s10291-014-0403-7
- Chen, G. and T. A. Herring (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, J. Geophys. Res., 102(B9), pp. 20,489{20,502, doi: 10.1029/97JB01739
- Douša, J., G. Dick, M. Kačmařík, R. Brožková, F. Zus, H. Brenot, A. Stoycheva, G. Möller and J. Kaplon (2016) Benchmark campaign and case study episode in central Europe for development and assessment of advanced GNSS tropospheric models and products. Atmos. Meas. Tech. 9 (2989 - 3008) doi: 10.5194/amt-9-2989-2016
- Eriksson, D., D. S. MacMillan, and J. M. Gipson (2014) Tropospheric delay ray tracing applied in VLBI analysis, J. Geophys. Res. Solid Earth, 119, 9156–9170, doi: 10.1002/2014JB011552
- Herring, T. A. (1992) Modeling atmospheric delays in the analysis of space geodetic data, in Proceedings of refraction of transatmospheric signals in geodesy, Netherlands Geodetic Commission Series, 36, The Hague, Netherlands, pp. 157-164
- Lagler, K., M. Schindelegger, J. Böhm, H. Krásná and T. Nilsson (2013) *GPT2: empirical slant delay model for radio space geodetic techniques*. Geophys. Res. Lett., 40, 1069–1073, doi:10.1002/grl.50288
- Marini, J. W. (1972), Correction of Satellite Tracking Data for an Arbitrary Tropospheric Profile, Radio Sci., 7(2), 223-231, doi: 10.1029/RS007i002p00223
- Nilsson T., B. Soja, M. Karbon, R. Heinkelmann and H. Schuh (2015) Application of Kalman filtering in VLBI data analysis. Earth, Planets and Space 67(136):1 9, doi:10.1186/s40623-015-0307-y
- Schuh, H. and D. Behrend (2012) VLBI: A fascinating technique for geodesy and astrometry, Journal of Geodynamics, Vol. 61, pp. 68-80, October 2012. doi:10.1016/j.jog.2012.07.007
- Zus, F., G. Dick, J. Douša, S. Heise and J. Wickert (2014) The rapid and precise computation of GPS slant total delays and mapping factors utilizing a numerical weather model, Radio Sci., 49, 207-216, doi:10.1002/2013RS005280
- Zus, F., G. Dick, J. Dousa and J. Wickert (2015) Systematic errors of mapping functions which are based on the VMF1 concept, GPS Solutions, 19, 2, 277-286, doi:10.1007/s10291-014-0386-4

Thank you for your attention!

kyriakos.balidakis tu-berlin.de

Acknowledgements

IVS for coordinating the VLBI experiments used in this work.
 ECMWF for making publicly available the ERA interim reanalysis data sets.
 KB is supported by the DFG project under grant HE 5937/2-1.

29

DEG

Balidakis et al.: On the impact of tropospheric modeling on the results of VLBI analysis

