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‚ Introduction;
‚Resonance around FCN, geophysical excitations; 
‚Broad-band Liouville equations, numerical integration; 
‚Comparison with VLBI observations.

Quasi-diurnal atmospheric and oceanic
excitation of nutation
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Jan Vondrák & Cyril Ron, Astronomical Institute, Prague

Outline:
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‚There are only weak geophysical excitations in short-
periodic (near diurnal) range in terrestrial frame;

‚Due to the existence of a flattened fluid and rigid inner
core, there are however strong resonances in this part of
the spectrum, leading to
Ú a non-negligible influence on the celestial motion of the

Earth’s spin axis in space - nutation.
‚The strongest resonance in this region is the Free Core

Nutation (FCN) with retrograde period: 
Ú in terrestrial frame: around 23h 53min mean solar time,
Ú in celestial frame: around 430 days.

Introduction:
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‚The period of retrograde FCN (in space) is inversely
proportional to the dynamical ellipticity of the fluid
core;

‚ If the core were in hydrostatic equilibrium, the period
would be .460 days - model IAU1980 (Wahr 1980);

‚VLBI observations before 2000 showed that the
ellipticity is by about 4% larger | period .430 days -
model IAU2000 (Mathews et al. 2002);

‚Our own recent studies yield:
Ú From the combination of VLBI/GPS observations 1994.7-

2004.6 (Vondrák et al. 2005) 430.55±0.11 days,
Ú From VLBI observations 1982.4-2005.6 (Vondrák & Ron

2006) 430.32±0.07 days.
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Resonance (Mathews-Herring-Buffet transfer function):
4

amplitude ratio of non-rigid/rigid Earth model:

where eR is dynamical ellipticity of rigid Earth, σ is the
frequency of nutation (in ITRF), N, Q are constants, and
sj are resonance frequencies:
 
1. Chandler Wobble - CW (Pter. = 435 d);
2. Retrograde Free Core Nutation - RFCN (Pcel. = 430 d);
3. Prograde Free Core Nutation - PFCN (Pcel. = 1020 d); 
4. Inner Core Wobble - ICW (Pter. = 2400 d).
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‚Nutation, irregular distribution 1-7 days:
Ú Combined IVS solution ivsM6q4X.eops (1979.6-2007.0) -

celestial pole offsets δX, δY (from IAU2000A model);
‚Geophysical excitations, 6-h intervals:
Ú Atmospheric Angular Momentum functions
Ú NCEP/NCAR re-analysis (1948.0-2006.7);
Ú ERA (1979.0-2001.00).

Ú Oceanic Angular Momentum functions 
Ú ECCO model (1993.0-2006.2);
Ú OMCT model (1979.0-2001.0);
Ú Rui Ponte model (1993.0-2000.5).

Data used:
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‚AAM, OAM are given in terrestrial frame, they must be
transformed into celestial (non-rotating) frame;

‚We are interested only in long-periodic motions,
therefore we further re-calculated the transformed
AAM/OAM:
Ú Short-periodic signal (P<60 days) was smoothed out.

‚Following combinations of geophysical excitations
are used:
Ú NCEP AAM with inverted barometer (IB) correction;
Ú NCEP AAM + ECCO OAM;
Ú ERA40 AAM + OMCT OAM;
Ú NCEP AAM + PONTE OAM.

Atmospheric and oceanic excitations:
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Numerical integration of broad-band Liouville equations:
(after Brzezinski, in celestial frame, complex form, only “matter terms” retained)
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where 
P is the motion in celestial system;
σNC , σNf are Chandler and FCN frequency in celestial frame;
σC is Chandler frequency in terrestrial frame;
χNP is excitation (matter term) in celestial frame;
ap = 9.2×10!2 is a numerical constant.
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‚Solution of broad-band Liouville equations generally
yields two free motions:
Ú Prograde Chandler Wobble with frequency in celestial

system: σNC = 6.32000rad/day,
Ú Retrograde Free Core Nutation with frequency in

celestial system: σNf = !0.0146011rad/day
‚plus forced nutations, depending on excitation

function.

9

Numerical integration by Runge-Kutta method
of fourth order is used, with 6-hour step.
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Geophysical contributions to nutation

dX dY
Excitation annual   semi-annual annual semi-annual
AAM+OAM sin cos sin cos sin cos sin cos

NCEP (IB)    !42.3   !80.1 +8.8 +20.5  !90.4   !85.5  +21.2  !5.7
  ±1.7  ±1.7    ±1.7  ±1.7    ±1.7 ±1.7   ±1.7 ±1.7

NCEP+ECCO !31.6   +41.3     !14.5 +38.5    !199.7   !43.1      !8.4     +8.5
 ±4.8 ±4.9    ±4.9     ±4.9     ±4.6 ±4.7   ±4.6     ±4.6

ERA+OMCT +45.4 !182.2     !21.4   +45.1 !159.9 !146.5  +50.2 +29.4
 ±5.4 ±5.4    ±5.3     ±5.3    ±5.3 ±5.3   ±5.3  ±5.3

NCEP+PONTE +14.1 +118.4     !20.2   +32.3 !255.0 +173.4    +9.5 +46.0
  ±11.0   ±11.0  ±10.9      ±10.9  ±11.0      ±11.0 ±11.0    ±11.0
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‚ Observed celestial pole offsets around FCN contain not only free,
but also forced motions due to excitations by outer parts
(atmosphere, oceans) of the Earth; significant are annual and
semi-annual terms;

‚ Atmospheric pressure term with IB correction (simple oceanic
model) is sufficiently large to excite the observed motion -
numerical integration yields correct amplitudes, but the phase
starts to be inconsistent with observations after 15 years of
integration;

‚ The best fit to observations yields the combination of NCEP AAM
with ECCO OAM, other two oceanic models (OMCT, Ponte) give
significantly worse results;

‚ Geophysical contributions to nutation (annual & semi-annual
terms) differ significantly, depending on oceanic model used.

Conclusions: 16


