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Abstract: A detailed algorithm of GPS baseline processing using sequential
adjustment is presented in this paper. This algorithm offers opportunity to detect the
changes of point position instantly. Therefore it can be used in automated deformation
monitoring systems. The new software was created on the basis of presented algorithm.
This software is expected to serve mainly for research purposes.

1. Introduction

The automated, monitoring deformation systems necessitate implementation of real
time mode baseline processing algorithm. This algorithm must ensure fast calculations
and oportunity of instant detecting the changes of point position. Sequential adjustment
algorithm has these features. The way of using the sequential adjustment algorithm to
baseline processing in real time mode is described below.

2. Observation equations

In proposed algorithm two types of observation are used: the pseudoranges and carrier
phases. We can show the observation equations for both types of observations as
follow[1],[2].[3].[4]:

@=L p+f(dt-dt,)+ £5"P-LF"+N+ep (1)
P=p+c(dt>-dt,)+8"P+5/""+¢,
where:
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® - measured carrier phase

f - carrier frequency

p - geometric range receiver-satellite

¢ - vacuum speed of light

dt® - offset of satellite clock

dt, - offset of receiver clock

8P " _delays due to the troposphere and ionosphere

o, €p - the effect of measurement noise for carrier phases and pseudoranges
respectively

In proposed algorithm double differenced carrier phase and pseudoranges are used:
VA®=VAp+VAN+VAee
VAP=VAp+VAep (2

It is assumed that the clock offsets and the effect of ionosphere are removed by double
differencing the observations.

3. Ambiguity resolution

To resolve ambiguities both types of observation: pseudoranges and carrier phases are
used.

Therefore a preliminary adjustment is performed. In this adjustment following
functional model is used:

V=AX+L, ©)
where:

V - corrections vector
Ap . : :
A= A Ap, App - functional model matrices for double differenced
DD

pseudoranges and carrier phases respectively

X
X= [XC} Xc-coordinates increment vector, X, - ambiguity vector

L
L= { P } L,, Loo - free terms vectors for double differenced

pseudoranges and carrier phases respectively

Statistical model can be written as:



C=5°Q 4)
where:
C - covariance matrix
_v'ev
n—m

52 - variance coefficient
(n - number of observations, m- number of parameters

9=[Qp 9 } Qp, Qop -cofactor matrices for pseudoranges and double
DD

differenced carrier phases respectively

Hence the solution of least squares estimation is the following vector:

X=(A'"C*'A)'ATCL (5)
and his variance matrix:
Cx=8*(A'C'A) ! (6)

Matrix Cx has following structure:

C : . : -
CX:{ ¢ c } C., Ca - covariance matrices of coordinates and ambiguites
a

respectively.

Algorithm of preliminary adjustment can be shown as follow:

1. Acquisition of observation data (pseudorange and phases) from the first epoch

2. Adjustement

3. Testing the following condition:
maximum(diag(Ca))< 67 max (7)
where 6 max iS constant

4. If condition (7) returns false then number of observations is increased by adding
observation set from next epoch in next adjustment.

5. When condition (7) returns true the preliminary adjustment is finished. Integer
ambiguities are calculeted from last step using vector X, and C, matrix with
LAMBDA method [5].

6. Finally adjustment of the double differenced carrier phases with fixed, integer
ambiguites is performed. The functional model of this adjustment can be presented
by means of the following system of the correction equations:

Voo=AbpbcXctLpboe (8)
where:



Lopc=_Lpp+AbppaXafix

Appe, Appa - submatrices of App refering to coordinates and ambiguites
respectively

Xafix - vector of fixed, integer ambiguites

4. Sequential adjustment
Functional model for the sequential adjustment reads as follow:
V=AsXctLs (9)
where:
V; - residuals vector

E
A = [ } E is 3x3 dimension unit matrix
DDc

0
L,= [ } 0 is 3x1 dimension vector of zeros
DDc

Statistical model can be presented in the form of following covariance matrix:

G :8295
(10)

where:
Q= {QC o } , Q¢ - cofactor matrix for coordinates
DD

If preliminary adjustment observations set consists of observations taken from n
epochs, then sequential adjustment starts with n+1% epoch (the n+1* epoch of baseline
processing is the first epoch of sequential adjustment). In each successive epoch
separate adjustment is performed. The matrix As and the vector Ls are formed on the
basis of coordinates obtained from previous adjustment and carrier phases from
present epoch. In the first epoch of sequential adjustment elements of matrix App. and
vector Lppc. are determined on the basis of coordinates taken from preliminary
adjustment and fixed ambiguites.

5. Cycle slips detection

Before matrix As and vector L are formed, cycle slips must be detected. Solution of this
problem is based on triple differenced carrier phases analysis. Triple differences are
formed as differences of double differenced carrier phases from last three successive
epochs. This values (for each pair of satellites) are stored and updated in two-elements
vectors. It is assumed that cycle slip appears if rounded difference of that two elements
differs from zero. If cycle slip is detected the appropriate value of ambiguity is changed.

Assume dd(i), i=1, 2, .. 5 as a time series for the double differenced carrier phases which
contain cycle slip of x at 4-th epoch:



1 dd(1)

2

3 dd(3)
tds+x

4 dd(4)+x qds-x
td,

5 dd(5)+x

In this scheme the third column contains triple differences of carrier phases and fourth
column the differences of the triple differences (quadruple differences). The values of
elements from the fourth column are small (usually below 0.1). Therefore the rounded
values of fourth column elements equals values of cycle slips (apart of next after non
zero element — it must be corrected by adding the value of cycle slip). In fact if in i-th
epoch a cycle slip appears then in i+1% epoch the value of cycle slip is added to 1-st
element (from i-1* epoch) of double difference vector. In this way the triple differences
vector and the quadruple difference in i+1* epoch are free from effect evoked by cycle
slip from i-th epoch.

If there are no cycle slips the values of quadruple differences equals zero.

The values of double differences, triple differences, and quadruple difference in fourth
epoch (when appears a cycle slip) are inside the triangle on the scheme.

6. Results of the test

The algorithm was applied to raw GPS data. The results of preliminary
adjustments are given in Fig. 1. Mean errors of ambiguities were calculated as square
roots of diagonal elements C, from formula (6). In the test it took 6 epochs (with
interval=20 sec.) of observations before the mean errors of ambiguities were lower than
O max=0.3.

Differences of parameter values in successive epochs and their mean errors are
presented on Fig. 2. The results in 6-th epoch were obtained from adjustment of data set
consists of double differenced carrier phases from epoch: 1 to 6 with fixed ambiguities.
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Fig. 2 Differences of parameter values in successive epochs and their mean errors

Subsequent results derive from sequential adjustment. Starting from 7-th epoch the
maximal changes of coordinates in successive epochs are lower than 1 mm. Mean errors
do not exceed 3 mm.



epoch data refSV8,SV10 | refSV8,SV26 | refSV8,SV27 | refSV8,SV28 | ref SV 8, SV 29
double 67382.677 223923.791 100820.867 -161858.912 -148874.171
differences 67379.221 -223925.038 100819.956 -161859.286 -148875.591
67375.766 -223926.291 100819.001 -161859.657 -148876.995
triple -3.456 1.247 20911 0.374 1420
12 differences -3.455 -1.253 -0.955 -0.371 -1.404
g.”adr“p'e 0.001 -0.006 -0.044 0.003 0.016
ifferences
cycle slips 0 0 0 0 0
double 67379.221 223925.038 100819.956 -161859.286 -148875.591
difforences 67375.766 -223926.291 100819.001 -161859.657 -148876.995
67372.317 -223927.539 100818.043 -161860.011 -148878.401
13 triple -3.455 1253 -0.955 0371 -1.404
differences -3.449 -1.248 -0.958 -0.354 -1.406
g.”adr“p'e 0.006 0.005 -0.003 0.017 -0.002
ifferences
cycle slips 0 0 0 0 0
double 67375.766 -223926.291 100819.001 -161859.657 -148876.995
differences 67372.317 -223927.539 100818.043 -161860.011 -148878.401
67368.840 -223928.784 100817.070 -161860.414 -148871.871
1 triple 3.449 1.248 0.958 0.354 ~1.406
differences 3.477 -1.245 0.973 -0.403 6.530
g.“adr“p'e -0.028 0.003 -0.015 -0.049 7.936
ifferences
cycle slips 0 0 0 0 8
double 67372.317 223927.539 100818.043 -161860.011 ~148870.401
differences 67368.840 -223928.784 100817.070 -161860.414 -148871.871
67365.404 -223930.009 100816.097 -161860.760 -148873.287
15 triple 3.477 -1.245 20973 -0.403 -1.470
differences -3.436 -1.225 -0.973 -0.346 -1.416
quadruple 0.041 0.020 0.000 0.057 0.054
differences
cycle slips 0 0 0 0 0

Tab. 1 Cycle slips detection

Tab. 1 includes the quantities that were used as basis for cycle slips detection. In
presented example the cycle slip appears in 14-th epoch for following pair of satellites:
8, 29. Its value (8 cycles) was determined as rounded value of quadruple difference
(7.936).

7. Final remarks

Algorithm described in this paper gives reliable results on the basis of the data set from
several epochs and offers the possibility of detecting instant changes in point position.
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