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Abstract: A detailed algorithm of GPS baseline processing using sequential 
adjustment is presented in this paper. This algorithm offers opportunity to detect the 
changes of point position instantly. Therefore it can be used in automated deformation 
monitoring systems. The new software was created on the basis of presented algorithm. 
This software is expected to serve mainly for research purposes. 

 

1. Introduction  

The automated, monitoring deformation systems necessitate implementation of real 
time mode baseline processing algorithm. This algorithm must ensure fast calculations 
and oportunity of instant  detecting the changes of point position. Sequential adjustment 
algorithm has these features. The way of using the sequential adjustment algorithm to 
baseline processing in real time mode is described below. 

 

2. Observation equations  

In proposed algorithm two types of observation are used: the pseudoranges and carrier 
phases. We can show the observation equations for both types of observations as 
follow[1],[2],[3],[4]: 

 Φ= c
f ρ+f(dts-dtr)+ c

f δtrop- c
f δjon+N+εΦ       (1) 

 P=ρ+c(dts-dtr)+δtrop+δjon+εp 

where: 
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 Φ - measured carrier phase 

 f   - carrier frequency 

 ρ  - geometric range receiver-satellite 

 c  - vacuum speed of light 

 dts - offset of satellite clock  

 dtr - offset of receiver clock 

 δtrop, δjon -delays due to the troposphere and ionosphere 

 εΦ, εp - the effect of measurement noise for carrier phases and pseudoranges  
  respectively 

In proposed algorithm double differenced carrier phase and pseudoranges are used: 

 ∇∆Φ=∇∆ρ+∇∆N+∇∆εΦ       

∇∆P=∇∆ρ+∇∆εP       (2) 

It is assumed that the clock offsets and the effect of ionosphere are removed by double 
differencing the observations. 

 

3. Ambiguity resolution 

 

To resolve ambiguities both types of observation: pseudoranges and carrier phases are 
used. 

Therefore a preliminary adjustment is performed. In this adjustment following 
functional model is used: 

 V=AX+L ,          (3) 

where: 

 V - corrections vector 
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A  Ap, ADD - functional model matrices for double differenced  
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L  Lp, LDD - free terms vectors for double differenced 

pseudoranges and carrier phases respectively 

 

Statistical model can be written as: 



  
 
 
 
 C=δ2Q           (4) 

where: 

 C - covariance matrix 
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    (n - number of observations,  m- number of parameters 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

DD

p

Q
Q

Q  Qp, QDD -cofactor matrices for pseudoranges and double 

          differenced carrier phases respectively 

 

 

Hence the solution of least squares estimation is the following vector: 

 X=(ATC-1A) -1ATC-1L         (5) 

and his variance matrix: 

 CX= δ2 (ATC-1A) -1         (6) 

Matrix CX has following structure: 
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C , Cc, Ca - covariance matrices of coordinates and ambiguites 

respectively. 

  

Algorithm of preliminary adjustment can be shown as follow: 

1. Acquisition of observation data (pseudorange and phases) from the first epoch 

2. Adjustement 

3. Testing the following condition: 

  maximum(diag(Ca))< σ2
 max       (7) 

  where σ2
 max is constant  

4. If condition (7) returns false then number of observations is increased by adding 
observation set from next epoch in next adjustment. 

5. When condition (7) returns true the preliminary adjustment is finished. Integer 
ambiguities are calculeted from last step using vector Xa  and Ca  matrix with 
LAMBDA method [5].  

6. Finally adjustment of the double differenced carrier phases with fixed, integer 
ambiguites is performed. The functional model of this adjustment can be presented 
by means of the following system of the correction equations: 

 VDD=ADDcXc+LDDc         (8) 

where: 



  
 
 
 
 LDDc= LDD+ADDaXafix

 ADDc, ADDa - submatrices of ADD refering to coordinates and ambiguites 
respectively 

 Xafix - vector of fixed, integer ambiguites 

4. Sequential adjustment 

Functional model for the sequential adjustment reads as follow: 

Vs=AsXc+Ls          (9) 

where: 

 Vs - residuals vector 
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L  0 is 3x1 dimension vector of zeros 

Statistical model can be presented in the form of following covariance matrix: 

 Cs =δ2Qs         
 (10) 

where: 
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Q , Qc - cofactor matrix for coordinates                                     

 If preliminary adjustment observations set consists of observations taken from n 
epochs, then sequential adjustment starts with n+1st  epoch (the n+1st  epoch of baseline 
processing is the first epoch of sequential adjustment). In each successive epoch 
separate adjustment is performed. The matrix As and the vector Ls are formed on the 
basis of coordinates obtained from previous adjustment and carrier phases from 
present epoch.  In the first epoch of sequential adjustment elements of matrix ADDc and 
vector LDDc are determined on the basis of coordinates taken from preliminary 
adjustment and fixed ambiguites. 

5. Cycle slips detection 

 Before matrix As and vector Ls are formed, cycle slips must be detected. Solution of this 
problem is based on triple differenced carrier phases analysis. Triple differences are 
formed as differences of double differenced carrier phases from last three successive 
epochs. This values (for each pair of satellites) are stored and updated in two-elements 
vectors.  It is assumed that cycle slip appears if rounded difference of that two elements 
differs from zero. If cycle slip is detected the appropriate value of ambiguity is changed. 

Assume dd(i), i=1, 2, .. 5 as a time series for the double differenced carrier phases which 
contain cycle slip of x at 4-th epoch: 

 



  
 
 
 
i (epoch) dd(i)  td  qd 

------------------------------------------------------------- 

1  dd(1) 

    td1 

2  dd(2)    qd1 

    td2 

3  dd(3)    qd2+x 

    td3+x 

4  dd(4)+x    qd3-x 

    td4 

5  dd(5)+x 

 

In this scheme the third column contains triple differences of carrier phases and fourth 
column the differences of the triple differences (quadruple differences). The values of 
elements from the fourth column are small (usually below 0.1). Therefore the rounded 
values of fourth column elements equals values of cycle slips (apart of next after non 
zero element – it must be corrected by adding the value of cycle slip). In fact if in i-th 
epoch a cycle slip appears then in i+1st  epoch the value of cycle slip is added to 1-st 
element (from i-1st epoch) of double difference vector. In this way the triple differences 
vector and the quadruple difference in i+1st epoch are free from effect evoked by cycle 
slip from i-th epoch. 

If there are no cycle slips the values of quadruple differences equals zero.  

The values of double differences, triple differences, and quadruple difference in fourth 
epoch (when appears a cycle slip)  are inside the triangle on the scheme. 

 

6. Results of the test 

 The algorithm was applied to raw GPS data. The results of preliminary 
adjustments are given in Fig. 1. Mean errors of ambiguities were calculated as square 
roots of diagonal elements Ca from formula (6). In the test it took 6 epochs (with 
interval=20 sec.) of observations before the mean errors of ambiguities were lower than 
σ max=0.3.  

Differences of parameter values in successive epochs and their mean errors are 
presented on Fig. 2. The results in 6-th epoch were obtained from adjustment of data set 
consists of double differenced carrier phases from epoch: 1 to 6 with fixed ambiguities. 



  
 
 
 

 

 
Fig. 1 Mean errors of ambiguities 
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Fig. 2 Differences of parameter values in successive epochs and their mean errors 

 
Subsequent results derive from sequential adjustment. Starting from 7-th epoch the 
maximal changes of coordinates in successive epochs are lower than 1 mm. Mean errors 
do not exceed 3 mm. 
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epoch data ref SV 8, SV 10 ref SV 8, SV 26 ref SV 8, SV 27 ref SV 8, SV 28 ref SV 8, SV 29 

double 
differences 

67382.677 
67379.221 
67375.766 

-223923.791 
-223925.038 
-223926.291 

100820.867 
100819.956 
100819.001 

-161858.912 
-161859.286 
-161859.657 

-148874.171 
-148875.591 
-148876.995 

triple 
differences 

-3.456 
-3.455 

-1.247 
-1.253 

-0.911 
-0.955 

-0.374 
-0.371 

-1.420 
-1.404 

quadruple 
differences 0.001 -0.006 -0.044 0.003 0.016 

12 

cycle slips 0 0 0 0 0 

double 
differences 

67379.221 
67375.766 
67372.317 

-223925.038 
-223926.291 
-223927.539 

100819.956 
100819.001 
100818.043 

-161859.286 
-161859.657 
-161860.011 

-148875.591 
-148876.995 
-148878.401 

triple 
differences 

-3.455 
-3.449 

-1.253 
-1.248 

-0.955 
-0.958 

-0.371 
-0.354 

-1.404 
-1.406 

quadruple 
differences 0.006 0.005 -0.003 0.017 -0.002 

13 

cycle slips 0 0 0 0 0 

double 
differences 

67375.766 
67372.317 
67368.840 

-223926.291 
-223927.539 
-223928.784 

100819.001 
100818.043 
100817.070 

-161859.657 
-161860.011 
-161860.414 

-148876.995 
-148878.401 
-148871.871 

triple 
differences 

-3.449 
-3.477 

-1.248 
-1.245 

-0.958 
-0.973 

-0.354 
-0.403 

-1.406 
6.530 

quadruple 
differences -0.028 0.003 -0.015 -0.049 7.936 

14 

cycle slips 0 0 0 0 8 

double 
differences 

67372.317 
67368.840 
67365.404 

-223927.539 
-223928.784 
-223930.009 

100818.043 
100817.070 
100816.097 

-161860.011 
-161860.414 
-161860.760 

-148870.401 
-148871.871 
-148873.287 

triple 
differences 

-3.477 
-3.436 

-1.245 
-1.225 

-0.973 
-0.973 

-0.403 
-0.346 

-1.470 
-1.416 

quadruple 
differences 0.041 0.020 0.000 0.057 0.054 

15 

cycle slips 0 0 0 0 0 
Tab. 1 Cycle slips detection 

Tab. 1 includes the quantities that were used as basis for cycle slips detection. In 
presented example the cycle slip appears in 14-th epoch for following pair of satellites: 
8, 29. Its value  (8 cycles) was determined as rounded value of quadruple difference 
(7.936).  

7. Final remarks 

Algorithm described in this paper gives reliable results on the basis of the data set from 
several epochs and offers the possibility of detecting instant changes in point position.  
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