

MULTI BASE KINEMATIC GPS PROCESSING, A CONSTRAINED BATCH SOLUTION APPLIED TO ANTENNA ARRAY

Wroclaw - Poland JUN, 22 – 24 2006

BACKGROUND ON GEODETIC NAVIGATION

- 1. Float ambiguities and variance-covariance matrix estimation.
- 2. Search for integer ambiguities (LAMBDA).
- 3. Correct double differences for ambiguities.
- 4. Solve for position inverting N_{x} .

Politecnico di Torino ALGORITHM

APPROXIMATE PARAMETERS

- Are estimated neglecting time correlation
- Double and triple differences are prepared
- Is possible to constrain the baseline length

Politecnico di Torino
ALGORITHM

FLOAT AMBIGUITIES

- Cycle slip are detected in the observations
- Estimation of float ambiguities:

•To consider time correlation require large matrices. As example: a data set of 15' at 1" data rate and double precision (8 byte) GPS single frequency observations produce a design matrix of ~120 Mbyte.

 Is necessary to treat the matrices as sparse. Matrices are stored in CSR (Compact Sparse Row) format or equivalent specific compact format. Design matrix reduces to ~1 Mbyte.

•Matrix - vector operations (sum, multiplication, transpose, inversion) speed up thanks to the sparse structure.

•The system is solved for carrier phase ambiguity only, using Schur decomposition

Politecnico di Torino ALGORITHM

Wroclaw - Poland JUN, 22 – 24 2006

FIX INTEGER AMBIGUITIES

 Estimation of the fix solution (the bias term is now known and removed from the observation vector)

NETWORK DESIGN

Design 1

- Very short baselines
- Very small differential biases
- (Large number of cycle slips)

Design 2

- Longer baselines
- (Fewer cycle slips)

Wroclaw - Poland JUN, 22 – 24 2006

Master antenna Rover antenna Independent baseline Constraint

Solutions

- Single base
- Multibase

Background on geodetic navigation Algorithm Network design Constraining baseline lenght Sparse matrices

> Applications Conclusions

Double differences

- Hypothesis (quite near to the reality):
 - no cycle slip originated into the master station M;
 - (no common cycle slip between the antennas A, B and C.)

Wroclaw - Poland JUN, 22 – 24 2006

Long baselines

- MA : Na cycle slips
- MB : Nb cycle slips
- MC : Nc cycle slips

Short baselines

- AB : Na+Nb cycle slips
- AC : Na+Nc cycle slips
- BC : Nb+Nc cycle slips

Background on

Network design

baseline lenght

Sparse matrices

Constraining

Applications

Conclusions

geodetic navigation

Algorithm

Politecnico di Torino

CONSTRAINING BASELINE LENGHT

100.....

3.7 mm

6.1 mm

10.0 mm

0.14 gon

0.31 gon

Hypothesis :	AINT	σ_{E}	=
 the tree antennas have the same 3D precision (σ = 1 cm); baseline length is not constrained; 	ISTR	σ_{N}	=
 the three baselines have the same length (2 m). 	CON	σ_{h}	=
• We obtain σ = 0.32 gon for the three attitude angles.	HOUT	σ_{κ}	=
	WITH	$\sigma_{\omega,\phi}$	=

σ_{E}	=	10.0 mm
σ_{N}	=	10.0 mm
σ_{h}	=	10.0 mm
σ_{κ}	=	0.32 gon
$\sigma_{\omega,\phi}$	=	0.32 gon

Wroclaw - Poland JUN, 22 - 24 2006

Hypothesis:

- The baselines are now constrained ($\sigma = 1 \text{ mm}$); **Results:**
- better horizontal precision; ٠
- the vertical precision is unchanged; ٠
- better precision of the drift angle κ (σ = 0.14 gon). ٠

 σ_{E} = σ_{N} = σ_{h} = σ_{κ} = $\sigma_{\text{W,}\phi}$ =

WITH CONSTRAINT

CONSTRAINING BASELINE LENGTH Static test

horizontal position antenna B

Marco Roggero

CONSTRAINING BASELINE LENGTH Kinematic test

Background on		Deviazione standard caso statico senza vincolo [m]				Deviazione standard caso statico con vincolo [m]			
geodetic		Posizione antenna B			Posizione antenna B			-	
navigation		$\sigma_{\scriptscriptstyle E}$	$\sigma_{\scriptscriptstyle N}$	σ_h	O lunghezza baseline	$\sigma_{\scriptscriptstyle E}$	$\sigma_{\scriptscriptstyle N}$	σ_h	O lunghezza baseline
Algorithm	SP	0,43	0,68	0,93	0,40	0,43	0,68	0,93	0,40
Network design	SD	0,41	1,10	0,95	0,38	0,41	1,10	0,95	0,38
	DDC	0,45	1,07	1,02	0,41	0,10	1,16	1,05	0,02
Constraining	TD	0,004	0,008	0,009	0,004	0,001	0,008	0,026	0,0003
baseline lenght	DD Float	0.011	0.010	0.030	0.012	0.001	0.007	0.011	0.0003
Sparse matrices	DD Fixed	0,003	0,007	0,009	0,003	0,001	0,006	0,010	0,0003

- Constraining the baseline length:
 - Improve the estimation of the drift angle (that usually is the worst estimated by IMU), and σ_k reduces up to 50%;
 - Ambiguity fixing is more robust ;
- We need a multibase solution to correctly apply the constraints.

Wroclaw - Poland JUN, 22 – 24 2006

Applications

Conclusions

Politecnico di Torino APPLICATIONS

Background on geodetic navigation Algorithm Network design Constraining baseline lenght Sparse matrices Applications

Conclusions

The algorithm has been used to process data by two multi antenna systems for mobile mapping applications:

- 1. Mobile Mapping Vehicle for road cadastre surveying.
- 2. Boat for river bathymetry.

Wroclaw - Poland JUN, 22 – 24 2006

The software has been designed to handle GPS single frequency observations, over short baselines (2 -10 km); moreover:

- the software can process the data in multi-base approach;
- allows to constrain the baseline length between the antennas of the antenna array;
- final products are trajectories and orientation angles.

Marco Roggero

APPLICATIONS Mobile mapping test

Background on geodetic navigation Algorithm Network design Constraining baseline lenght Sparse matrices Applications Conclusions

Wroclaw - Poland JUN, 22 – 24 2006

One hour of GPS data have been acquired at 1" data rate, surveying new roads and traffic flows.

Marco Roggero

APPLICATIONS Mobile mapping test

Wroclaw - Poland JUN, 22 - 24 2006

Marco Roggero

APPLICATIONS Mobile mapping test

Wroclaw - Poland JUN, 22 – 24

Politecnico di Torino CONCLUSIONS

Background on geodetic navigation Algorithm Network design Constraining baseline lenght Sparse matrices

Applications

Conclusions

CONCLUSIONS

- We take advantage of the least squares approach, applying static constraints to kinematic observations.
- The multi base approach is necessary to correctly apply the constraints to the baseline length.
- Constraining the base line length in kinematic GPS data processing:
 - the robustness of cycle slip fixing have been increased;
 - the accuracy of estimated drift has been improved.
- However, the overall accuracy of the antenna array system is not improved by baseline length constraining; the main effect of constraining is only the robustness against cycle slips.

Wroclaw - Poland JUN, 22 – 24 2006