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Outlook
• Velocities and strain rates from multi (3 – 10 yrs of 

continuous tracking) year solutions with permanent GPS 
stations: data, algorithms, uncertainty estimates

• Attempting a seismic budget: strain accumulated
(measured geodetically) vs. strain released (measured from
earthquakes)

• Yield stress and fault reactivation time as a function of local
strain rate, friction coefficients, dip angle, lithostatic load, 
previous load.

• Velocity pattern on the surface as a boundary condition for
dynamic stick slip models of earthquake triggering

Reference Project: INGV – DPC S2 on the seismic risk in Italy
in the next 30 years, coordinated by D.Slejko and G.
Valensise, Task 3.



Velocities of permanent GPS stations relative to a paleomagnetic
kinematic model NUVEL1A NNR of Eurasia

•Time interval for
GPS: 1995-2006

•Solution obtained
from normal
equation stacking
of EUREF, Italian
and Austrian GPS 
stations with >3yrs 
of data

•Full compliance
with IGS/EUREF 
processing 
standards

•Uncertainty <0.5 
mm/yr (1σ)



Interpolation of velocity vectors with least squares
collocation, a minimum variance algorithm

• Variogram analysis: length of decorrelation d0 =290 km (correlation drop of 50%)
• Isotropic correlation function defined consistently:
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• E is a diagonal matrix with elements equal to the variance of each velocity component, e.g. in the 
sense of Allan variance.

•The choice of d0 discriminates between ‘signal’ and ‘noise’: other choices typically determine a higher
(small d0 ) or smaller (large d0 ) scale change of the interpolated variable, as can be expected
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Why 290 km? Examine typical deformation wavelength in an
isostatic flexural model of an elastic, continuous and semi-infinite 

2D plate, loaded at one end

• If E=70 Gpa, ν=0.25, density contrast 600 kg/m3 and plate
thickness h ~ 27 km, then the flexural parameter α ~ 290 km

• Conclusion: 290 km is the typical horizontal scale of elastic
deformation, and the statistics of our velocities agree with this
estimate
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Geodetic strain rate from GPS velocities, 
CMT and seismogenic sources from DISS 3.0

Strain rates are 
computed by
numerically
differentiating
velocities in a 
neighbourhood
of a GPS station

Moderate values: 
~30 –50 
nstrain/yr

~290 km
Strain rate

velocities



Estimating a formal strain rate uncertainty
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Step 2: Linear propagation of the strain rate 
uncertainty from geographical axes to principal
axes:

Step 1: Mapping by collocation the velocity uncertainties into strain rate 
uncertainties, expressed in geographical coordinates



Deviatoric stress Δσxx at yield point

( )

θστ

θσρσ

2sin
2

2cos1
2

xx

xx
wn pgh

Δ
±=

+
Δ

+−=

)2cos1(2sin
)(2

θθ
ρσστ

+−±
−

=Δ⇒=
s

ws
xxns f

pghffAmonton law: static limit to
the deviatoric stress

Theory of Anderson :

n
t

θ

( )o
xx

xx
xx

tE σ
ν

εσ +
−

Δ
=Δ

•

21

Recurrence time Δt under a perfectly elastic, plain stress hypothesis : it depends on 
strain rate and preexistent deviatoric stress in the rocks:
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In 100 years tectonics accounts for 0.2 MPa, if the 
strain rate is 30 nstrain/yr
If the yield deviatoric stress is of some MPa, for
M>5.5 typically, fs must be of the order of 0.01 and 
the starting stress must also be of the order of 1 MPa



Slip Profiles in the 
Eastern Alps

Velocities are interpolated to a 
profile (left) and their
projection onto the profile
is plotted against space 
(right)

A shortening of  up to ~ 6 
mm/yr is implied across
the 300 km profile, or 20 
nstrain/year. Locally can 
be higher, to ~ 40 nstrain
/yr

Divergent pattern in parallel
profiles across the Tauern
window may imply a 
squeezing and hence
lateral extrusion

2-3 mm/yr
1- 2 mm/yr

shortening

extension



Conclusions, and some open questions
• The Adria/East Alps deformation zone is well

constrained kinematically by permanent GPS stations: 
strain accumulation can be estimated in seismogenic
areas; eigenvectors of the strain rate tensor are in 
excellent agreement with P-T axes of fault plane
solutions. 

• Geodetic data in Friuli indicate a shortening of 4 – 6 
mm/yr, with inversion in Tirol: possible kinematic
evidence of lateral extrusion of the Tauern window, 
with the Pannonian basin acting as stress sink?

• Yield stress corresponding to a stick/slip transition
depends on friction coefficient, pore fluid pressure, dip
angle, reverse/direct faulting...These dynamical
parameters can be constrained with geodetic strain
rates measured at the surface. 

• To predict a reactivation time, the knowledge of the 
friction coefficient and of the pre-existing stress is
crucial
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